{"title":"通过自适应内容修改实现个性化学习","authors":"Hicham Er-Radi, S. Aammou, Aymane Jdidou","doi":"10.18316/rcd.v15i39.11153","DOIUrl":null,"url":null,"abstract":"This research aims to explore the effectiveness of adaptive learning systems in dynamically modifying content to align with the abilities and knowledge levels of individual learners. By employing data analytics and machine learning algorithms, the study examines how content difficulty adjustment, pacing, content selection, and adaptive feedback contribute to a personalized learning experience. This study embarked on an exploration of the efficacy and implications of adaptive learning systems across diverse educational settings: K-12 classrooms, higher educational institutions, and corporate training environments. Through a multi-modal approach, incorporating both quantitative and qualitative analyses, the study evaluated the potential benefits and transformative impact of these personalized learning tools. Quantitatively, results indicated marked improvements post-intervention: notably, a rise in completion rates, significant enhancement in test scores, and increased engagement durations. Machine learning analyses further revealed patterns among learners, signifying segments that benefited immensely from the intervention. Qualitative feedback, obtained through semi-structured interviews, painted a compelling narrative of learner experiences. Common themes emphasized the system's adeptness at adjusting difficulty, facilitating personalized pacing, and providing nuanced, constructive feedback. Adaptive learning systems emerge as a potent tool in modern educational strategies, blending technology and pedagogy to deliver a tailored, responsive learning experience. However, while the immediate implications are promising, the broader applicability and long-term outcomes warrant further research. This study serves as a foundational exploration, signaling the transformative potential of adaptive learning in reshaping educational landscapes.","PeriodicalId":408174,"journal":{"name":"Conhecimento & Diversidade","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERSONALIZED LEARNING THROUGH ADAPTIVE CONTENT MODIFICATION\",\"authors\":\"Hicham Er-Radi, S. Aammou, Aymane Jdidou\",\"doi\":\"10.18316/rcd.v15i39.11153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to explore the effectiveness of adaptive learning systems in dynamically modifying content to align with the abilities and knowledge levels of individual learners. By employing data analytics and machine learning algorithms, the study examines how content difficulty adjustment, pacing, content selection, and adaptive feedback contribute to a personalized learning experience. This study embarked on an exploration of the efficacy and implications of adaptive learning systems across diverse educational settings: K-12 classrooms, higher educational institutions, and corporate training environments. Through a multi-modal approach, incorporating both quantitative and qualitative analyses, the study evaluated the potential benefits and transformative impact of these personalized learning tools. Quantitatively, results indicated marked improvements post-intervention: notably, a rise in completion rates, significant enhancement in test scores, and increased engagement durations. Machine learning analyses further revealed patterns among learners, signifying segments that benefited immensely from the intervention. Qualitative feedback, obtained through semi-structured interviews, painted a compelling narrative of learner experiences. Common themes emphasized the system's adeptness at adjusting difficulty, facilitating personalized pacing, and providing nuanced, constructive feedback. Adaptive learning systems emerge as a potent tool in modern educational strategies, blending technology and pedagogy to deliver a tailored, responsive learning experience. However, while the immediate implications are promising, the broader applicability and long-term outcomes warrant further research. This study serves as a foundational exploration, signaling the transformative potential of adaptive learning in reshaping educational landscapes.\",\"PeriodicalId\":408174,\"journal\":{\"name\":\"Conhecimento & Diversidade\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conhecimento & Diversidade\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18316/rcd.v15i39.11153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conhecimento & Diversidade","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18316/rcd.v15i39.11153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PERSONALIZED LEARNING THROUGH ADAPTIVE CONTENT MODIFICATION
This research aims to explore the effectiveness of adaptive learning systems in dynamically modifying content to align with the abilities and knowledge levels of individual learners. By employing data analytics and machine learning algorithms, the study examines how content difficulty adjustment, pacing, content selection, and adaptive feedback contribute to a personalized learning experience. This study embarked on an exploration of the efficacy and implications of adaptive learning systems across diverse educational settings: K-12 classrooms, higher educational institutions, and corporate training environments. Through a multi-modal approach, incorporating both quantitative and qualitative analyses, the study evaluated the potential benefits and transformative impact of these personalized learning tools. Quantitatively, results indicated marked improvements post-intervention: notably, a rise in completion rates, significant enhancement in test scores, and increased engagement durations. Machine learning analyses further revealed patterns among learners, signifying segments that benefited immensely from the intervention. Qualitative feedback, obtained through semi-structured interviews, painted a compelling narrative of learner experiences. Common themes emphasized the system's adeptness at adjusting difficulty, facilitating personalized pacing, and providing nuanced, constructive feedback. Adaptive learning systems emerge as a potent tool in modern educational strategies, blending technology and pedagogy to deliver a tailored, responsive learning experience. However, while the immediate implications are promising, the broader applicability and long-term outcomes warrant further research. This study serves as a foundational exploration, signaling the transformative potential of adaptive learning in reshaping educational landscapes.