利用机器学习方法进行城市空气质量分类以加强环境监测

G. M. Idroes, T. R. Noviandy, A. Maulana, Zahriah Zahriah, S. Suhendrayatna, Eko Suhartono, K. Khairan, Fitranto Kusumo, Z. Helwani, Sunarti Abd Rahman
{"title":"利用机器学习方法进行城市空气质量分类以加强环境监测","authors":"G. M. Idroes, T. R. Noviandy, A. Maulana, Zahriah Zahriah, S. Suhendrayatna, Eko Suhartono, K. Khairan, Fitranto Kusumo, Z. Helwani, Sunarti Abd Rahman","doi":"10.60084/ljes.v1i2.99","DOIUrl":null,"url":null,"abstract":"Urban areas worldwide grapple with environmental challenges, notably air pollution. DKI Jakarta, Indonesia's capital city, is emblematic of this struggle, where rapid urbanization contributes to increased pollutants. This study employed the CatBoost machine learning algorithm, known for its resistance to overfitting and capability to handle missing data, to predict urban air quality based on pollutant levels from 2010 to 2021. The dataset, sourced from Jakarta's air quality monitoring stations, includes pollutants such as PM10, SO2, CO, O3, and NO2. After preprocessing, we used 80% of the data for training and 20% for testing. The model displayed high accuracy (0.9781), precision (0.9722), and recall (0.9728). The feature importance chart revealed O3 (Ozone) as the top influencer of air quality predictions, followed by PM10. Our findings highlight the dominant pollutants affecting urban air quality in Jakarta, Indonesia and emphasizing the need for targeted strategies to reduce their concentrations and ensure a cleaner and healthier urban environment.","PeriodicalId":279362,"journal":{"name":"Leuser Journal of Environmental Studies","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Air Quality Classification Using Machine Learning Approach to Enhance Environmental Monitoring\",\"authors\":\"G. M. Idroes, T. R. Noviandy, A. Maulana, Zahriah Zahriah, S. Suhendrayatna, Eko Suhartono, K. Khairan, Fitranto Kusumo, Z. Helwani, Sunarti Abd Rahman\",\"doi\":\"10.60084/ljes.v1i2.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban areas worldwide grapple with environmental challenges, notably air pollution. DKI Jakarta, Indonesia's capital city, is emblematic of this struggle, where rapid urbanization contributes to increased pollutants. This study employed the CatBoost machine learning algorithm, known for its resistance to overfitting and capability to handle missing data, to predict urban air quality based on pollutant levels from 2010 to 2021. The dataset, sourced from Jakarta's air quality monitoring stations, includes pollutants such as PM10, SO2, CO, O3, and NO2. After preprocessing, we used 80% of the data for training and 20% for testing. The model displayed high accuracy (0.9781), precision (0.9722), and recall (0.9728). The feature importance chart revealed O3 (Ozone) as the top influencer of air quality predictions, followed by PM10. Our findings highlight the dominant pollutants affecting urban air quality in Jakarta, Indonesia and emphasizing the need for targeted strategies to reduce their concentrations and ensure a cleaner and healthier urban environment.\",\"PeriodicalId\":279362,\"journal\":{\"name\":\"Leuser Journal of Environmental Studies\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leuser Journal of Environmental Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60084/ljes.v1i2.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leuser Journal of Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ljes.v1i2.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全世界的城市地区都在努力应对环境挑战,尤其是空气污染。印度尼西亚首都雅加达就是这一斗争的典型代表,快速的城市化导致污染物增加。本研究采用 CatBoost 机器学习算法预测 2010 年至 2021 年的城市空气质量,该算法以其抗过度拟合和处理缺失数据的能力而著称。数据集来自雅加达的空气质量监测站,包括可吸入颗粒物(PM10)、二氧化硫(SO2)、一氧化碳(CO)、臭氧(O3)和二氧化氮(NO2)等污染物。经过预处理后,我们将 80% 的数据用于训练,20% 用于测试。该模型的准确度(0.9781)、精确度(0.9722)和召回率(0.9728)都很高。特征重要性图表显示,O3(臭氧)是空气质量预测的最大影响因素,其次是 PM10。我们的研究结果突显了影响印度尼西亚雅加达城市空气质量的主要污染物,并强调需要采取有针对性的策略来降低这些污染物的浓度,以确保更清洁、更健康的城市环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban Air Quality Classification Using Machine Learning Approach to Enhance Environmental Monitoring
Urban areas worldwide grapple with environmental challenges, notably air pollution. DKI Jakarta, Indonesia's capital city, is emblematic of this struggle, where rapid urbanization contributes to increased pollutants. This study employed the CatBoost machine learning algorithm, known for its resistance to overfitting and capability to handle missing data, to predict urban air quality based on pollutant levels from 2010 to 2021. The dataset, sourced from Jakarta's air quality monitoring stations, includes pollutants such as PM10, SO2, CO, O3, and NO2. After preprocessing, we used 80% of the data for training and 20% for testing. The model displayed high accuracy (0.9781), precision (0.9722), and recall (0.9728). The feature importance chart revealed O3 (Ozone) as the top influencer of air quality predictions, followed by PM10. Our findings highlight the dominant pollutants affecting urban air quality in Jakarta, Indonesia and emphasizing the need for targeted strategies to reduce their concentrations and ensure a cleaner and healthier urban environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信