通过横向电磁场实现单个和集体激发之间相干耦合的纳米棒尺寸依赖性

Masayuki Iio, Tomohiro Yokoyama, Takeshi Inaoka, H. Ishihara
{"title":"通过横向电磁场实现单个和集体激发之间相干耦合的纳米棒尺寸依赖性","authors":"Masayuki Iio, Tomohiro Yokoyama, Takeshi Inaoka, H. Ishihara","doi":"10.7566/jpsj.93.024701","DOIUrl":null,"url":null,"abstract":"Plasmon is a collective excitation in metals formed through the Coulomb interaction between individual excitations of electron-hole pairs. In many previous studies on the plasmonic response, the role of the longitudinal field has been focused almost exclusively on the light-induced plasmonic phenomena, e.g., hot-carrier generation. In our previous study [Phys. Rev. B 105, 165408 (2022)], we have revealed the significant contribution of the transverse electromagnetic field to connect plasmons and electron-hole pairs in nanostructures based on the self-consistent and nonlocal response theory. In this study, we examine how this contribution appears depending on the system parameters, e.g., length and refractive index. The elucidation of roles of coherent coupling between the collective and individual excitations by the transverse field will lead to the principle of controlling bidirectional energy transfer between the plasmons and electron-hole pairs, which could significantly enhance hot-carrier generation efficiency.","PeriodicalId":509167,"journal":{"name":"Journal of the Physical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanorod Size Dependence of Coherent Coupling between Individual and Collective Excitations via Transverse Electromagnetic Field\",\"authors\":\"Masayuki Iio, Tomohiro Yokoyama, Takeshi Inaoka, H. Ishihara\",\"doi\":\"10.7566/jpsj.93.024701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmon is a collective excitation in metals formed through the Coulomb interaction between individual excitations of electron-hole pairs. In many previous studies on the plasmonic response, the role of the longitudinal field has been focused almost exclusively on the light-induced plasmonic phenomena, e.g., hot-carrier generation. In our previous study [Phys. Rev. B 105, 165408 (2022)], we have revealed the significant contribution of the transverse electromagnetic field to connect plasmons and electron-hole pairs in nanostructures based on the self-consistent and nonlocal response theory. In this study, we examine how this contribution appears depending on the system parameters, e.g., length and refractive index. The elucidation of roles of coherent coupling between the collective and individual excitations by the transverse field will lead to the principle of controlling bidirectional energy transfer between the plasmons and electron-hole pairs, which could significantly enhance hot-carrier generation efficiency.\",\"PeriodicalId\":509167,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.024701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/jpsj.93.024701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

等离子体是金属中的一种集体激发,通过电子-空穴对的单个激发之间的库仑相互作用而形成。在以往许多关于等离子响应的研究中,纵向场的作用几乎都集中在光诱导的等离子现象上,例如热载流子的产生。在我们之前的研究[Phys. Rev. B 105, 165408 (2022)]中,我们基于自洽和非局部响应理论揭示了横向电磁场对连接纳米结构中的质子和电子-空穴对的重要贡献。在本研究中,我们研究了横向电磁场的贡献如何取决于系统参数,如长度和折射率。通过阐明横向场在集体激发和个体激发之间的相干耦合作用,我们将找到控制质子和电子-电洞对之间双向能量转移的原理,从而显著提高热载流子的生成效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanorod Size Dependence of Coherent Coupling between Individual and Collective Excitations via Transverse Electromagnetic Field
Plasmon is a collective excitation in metals formed through the Coulomb interaction between individual excitations of electron-hole pairs. In many previous studies on the plasmonic response, the role of the longitudinal field has been focused almost exclusively on the light-induced plasmonic phenomena, e.g., hot-carrier generation. In our previous study [Phys. Rev. B 105, 165408 (2022)], we have revealed the significant contribution of the transverse electromagnetic field to connect plasmons and electron-hole pairs in nanostructures based on the self-consistent and nonlocal response theory. In this study, we examine how this contribution appears depending on the system parameters, e.g., length and refractive index. The elucidation of roles of coherent coupling between the collective and individual excitations by the transverse field will lead to the principle of controlling bidirectional energy transfer between the plasmons and electron-hole pairs, which could significantly enhance hot-carrier generation efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信