通过深度学习对 COVID-19 咳嗽音频进行分类的综合评述

Praveen Gupta, S. Degadwala
{"title":"通过深度学习对 COVID-19 咳嗽音频进行分类的综合评述","authors":"Praveen Gupta, S. Degadwala","doi":"10.32628/cseit2361049","DOIUrl":null,"url":null,"abstract":"This review paper provides a comprehensive analysis of the advancements in COVID-19 cough audio classification through deep learning techniques. With the ongoing global pandemic, there is a growing need for non-intrusive and rapid diagnostic tools, and the utilization of audio-based methods for COVID-19 detection has gained considerable attention. The paper systematically reviews and compares various deep learning models, methodologies, and datasets employed for COVID-19 cough audio classification. The effectiveness, challenges, and future directions of these approaches are discussed, shedding light on the potential of audio-based diagnostics in the context of the current public health crisis.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review on COVID-19 Cough Audio Classification through Deep Learning\",\"authors\":\"Praveen Gupta, S. Degadwala\",\"doi\":\"10.32628/cseit2361049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper provides a comprehensive analysis of the advancements in COVID-19 cough audio classification through deep learning techniques. With the ongoing global pandemic, there is a growing need for non-intrusive and rapid diagnostic tools, and the utilization of audio-based methods for COVID-19 detection has gained considerable attention. The paper systematically reviews and compares various deep learning models, methodologies, and datasets employed for COVID-19 cough audio classification. The effectiveness, challenges, and future directions of these approaches are discussed, shedding light on the potential of audio-based diagnostics in the context of the current public health crisis.\",\"PeriodicalId\":313456,\"journal\":{\"name\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/cseit2361049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2361049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本综述论文全面分析了通过深度学习技术进行 COVID-19 咳嗽音频分类的进展。随着全球大流行病的不断蔓延,人们对非侵入式快速诊断工具的需求日益增长,而利用基于音频的方法检测 COVID-19 已受到广泛关注。本文系统回顾并比较了用于 COVID-19 咳嗽音频分类的各种深度学习模型、方法和数据集。本文讨论了这些方法的有效性、挑战和未来发展方向,揭示了在当前公共卫生危机背景下基于音频的诊断方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Review on COVID-19 Cough Audio Classification through Deep Learning
This review paper provides a comprehensive analysis of the advancements in COVID-19 cough audio classification through deep learning techniques. With the ongoing global pandemic, there is a growing need for non-intrusive and rapid diagnostic tools, and the utilization of audio-based methods for COVID-19 detection has gained considerable attention. The paper systematically reviews and compares various deep learning models, methodologies, and datasets employed for COVID-19 cough audio classification. The effectiveness, challenges, and future directions of these approaches are discussed, shedding light on the potential of audio-based diagnostics in the context of the current public health crisis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信