量子精度的大规模材料建模:金属合金中的准晶体和相互作用扩展缺陷的 Ab Initio 仿真

Sambit Das, Bikash Kanungo, Vishal Subramanian, Gourab Panigrahi, P. Motamarri, David M. Rogers, Paul M. Zimmerman, V. Gavini
{"title":"量子精度的大规模材料建模:金属合金中的准晶体和相互作用扩展缺陷的 Ab Initio 仿真","authors":"Sambit Das, Bikash Kanungo, Vishal Subramanian, Gourab Panigrahi, P. Motamarri, David M. Rogers, Paul M. Zimmerman, V. Gavini","doi":"10.1145/3581784.3627037","DOIUrl":null,"url":null,"abstract":"Ab initio electronic-structure has remained dichotomous between achievable accuracy and length-scale. Quantum many-body (QMB) methods realize quantum accuracy but fail to scale. Density functional theory (DFT) scales favorably but remains far from quantum accuracy. We present a framework that breaks this dichotomy by use of three interconnected modules: (i) invDFT: a methodological advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a machine-learned density functional trained with invDFT data, commensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive higher-order spectral finite-element (FE) based DFT implementation that integrates MLXC with efficient solver strategies and HPC innovations in FE-specific dense linear algebra, mixed-precision algorithms, and asynchronous compute-communication. We demonstrate a paradigm shift in DFT that not only provides an accuracy commensurate with QMB methods in ground-state energies, but also attains an unprecedented performance of 659.7 PFLOPS (43.1% peak FP64 performance) on 619,124 electrons using 8,000 GPU nodes of Frontier supercomputer.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Materials Modeling at Quantum Accuracy: Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys\",\"authors\":\"Sambit Das, Bikash Kanungo, Vishal Subramanian, Gourab Panigrahi, P. Motamarri, David M. Rogers, Paul M. Zimmerman, V. Gavini\",\"doi\":\"10.1145/3581784.3627037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ab initio electronic-structure has remained dichotomous between achievable accuracy and length-scale. Quantum many-body (QMB) methods realize quantum accuracy but fail to scale. Density functional theory (DFT) scales favorably but remains far from quantum accuracy. We present a framework that breaks this dichotomy by use of three interconnected modules: (i) invDFT: a methodological advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a machine-learned density functional trained with invDFT data, commensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive higher-order spectral finite-element (FE) based DFT implementation that integrates MLXC with efficient solver strategies and HPC innovations in FE-specific dense linear algebra, mixed-precision algorithms, and asynchronous compute-communication. We demonstrate a paradigm shift in DFT that not only provides an accuracy commensurate with QMB methods in ground-state energies, but also attains an unprecedented performance of 659.7 PFLOPS (43.1% peak FP64 performance) on 619,124 electrons using 8,000 GPU nodes of Frontier supercomputer.\",\"PeriodicalId\":124077,\"journal\":{\"name\":\"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581784.3627037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581784.3627037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Ab initio 电子结构在可实现的精确度和长度尺度之间一直是二元对立的。量子多体(QMB)方法实现了量子精度,但无法扩展。密度泛函理论(DFT)具有良好的扩展性,但仍与量子精度相去甚远。我们提出了一个框架,通过使用三个相互关联的模块来打破这种二元对立:(i) invDFT:反 DFT 方法的进步,将 QMB 方法与 DFT 相结合;(ii) MLXC:使用 invDFT 数据训练的机器学习密度泛函,与量子精度相称;(iii) DFT-FE-MLXC:一种基于自适应高阶谱有限元(FE)的 DFT 实现,它将 MLXC 与高效求解策略以及 FE 特定密集线性代数、混合精度算法和异步计算通信中的 HPC 创新集成在一起。我们展示了 DFT 的范式转变,它不仅在基态能量方面提供了与 QMB 方法相当的精度,而且在使用 8,000 个 GPU 节点的 Frontier 超级计算机的 619,124 个电子上实现了前所未有的 659.7 PFLOPS 性能(43.1% 的 FP64 峰值性能)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Materials Modeling at Quantum Accuracy: Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys
Ab initio electronic-structure has remained dichotomous between achievable accuracy and length-scale. Quantum many-body (QMB) methods realize quantum accuracy but fail to scale. Density functional theory (DFT) scales favorably but remains far from quantum accuracy. We present a framework that breaks this dichotomy by use of three interconnected modules: (i) invDFT: a methodological advance in inverse DFT linking QMB methods to DFT; (ii) MLXC: a machine-learned density functional trained with invDFT data, commensurate with quantum accuracy; (iii) DFT-FE-MLXC: an adaptive higher-order spectral finite-element (FE) based DFT implementation that integrates MLXC with efficient solver strategies and HPC innovations in FE-specific dense linear algebra, mixed-precision algorithms, and asynchronous compute-communication. We demonstrate a paradigm shift in DFT that not only provides an accuracy commensurate with QMB methods in ground-state energies, but also attains an unprecedented performance of 659.7 PFLOPS (43.1% peak FP64 performance) on 619,124 electrons using 8,000 GPU nodes of Frontier supercomputer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信