论分级环关于群同态的性质

IF 1 Q1 MATHEMATICS
A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh
{"title":"论分级环关于群同态的性质","authors":"A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh","doi":"10.1155/2023/3803873","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>G</mi> </math> </jats:inline-formula> be a group and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>R</mi> </math> </jats:inline-formula> be a <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>G</mi> </math> </jats:inline-formula>-graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>⟶</mo> <mi>G</mi> </math> </jats:inline-formula>. Next is to examine the new concepts compared to the known concepts. For example, it is known that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is weak if whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, then <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. In this article, we also introduce the concept of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings, where <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is said to be <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"> <mi>α</mi> </math> </jats:inline-formula>-weak whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>α</mi> <mrow> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. Note that if <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\"> <mi>G</mi> </math> </jats:inline-formula> is abelian, then the concepts of weakly and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings coincide with respect to the group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\"> <mi>α</mi> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> <mo>=</mo> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula>. We introduce an example of non-weakly graded ring that is <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\"> <mi>α</mi> </math> </jats:inline-formula>-weak for some <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\"> <mi>α</mi> </math> </jats:inline-formula>. Similarly, we establish and examine the concepts of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\"> <mi>α</mi> </math> </jats:inline-formula>-non-degenerate, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\"> <mi>α</mi> </math> </jats:inline-formula>-regular, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\"> <mi>α</mi> </math> </jats:inline-formula>-strongly, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\"> <mi>α</mi> </math> </jats:inline-formula>-first strongly graded rings, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\"> <mi>α</mi> </math> </jats:inline-formula>-weakly crossed product.</jats:p>","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"7 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Properties of Graded Rings with respect to Group Homomorphisms\",\"authors\":\"A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh\",\"doi\":\"10.1155/2023/3803873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <mi>G</mi> </math> </jats:inline-formula> be a group and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <mi>R</mi> </math> </jats:inline-formula> be a <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\"> <mi>G</mi> </math> </jats:inline-formula>-graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\"> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>⟶</mo> <mi>G</mi> </math> </jats:inline-formula>. Next is to examine the new concepts compared to the known concepts. For example, it is known that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\"> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is weak if whenever <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, then <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. In this article, we also introduce the concept of <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings, where <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\"> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is said to be <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\"> <mi>α</mi> </math> </jats:inline-formula>-weak whenever <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>α</mi> <mrow> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>g</mi> </mrow> </mfenced> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. Note that if <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\"> <mi>G</mi> </math> </jats:inline-formula> is abelian, then the concepts of weakly and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings coincide with respect to the group homomorphism <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\"> <mi>α</mi> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>g</mi> </mrow> </mfenced> <mo>=</mo> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula>. We introduce an example of non-weakly graded ring that is <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\"> <mi>α</mi> </math> </jats:inline-formula>-weak for some <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\"> <mi>α</mi> </math> </jats:inline-formula>. Similarly, we establish and examine the concepts of <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\"> <mi>α</mi> </math> </jats:inline-formula>-non-degenerate, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\"> <mi>α</mi> </math> </jats:inline-formula>-regular, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\"> <mi>α</mi> </math> </jats:inline-formula>-strongly, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\"> <mi>α</mi> </math> </jats:inline-formula>-first strongly graded rings, and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M24\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly crossed product.</jats:p>\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3803873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3803873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

同样,我们建立并研究了 α 非退化环、α 规则环、α 强环、α 第一强级环和α 弱交叉积的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Properties of Graded Rings with respect to Group Homomorphisms
Let G be a group and R be a G -graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism α : G G . Next is to examine the new concepts compared to the known concepts. For example, it is known that R , G is weak if whenever g G such that R g = 0 , then R g 1 = 0 . In this article, we also introduce the concept of α -weakly graded rings, where R , G is said to be α -weak whenever g G such that R g = 0 , and R α g = 0 . Note that if G is abelian, then the concepts of weakly and α -weakly graded rings coincide with respect to the group homomorphism α g = g 1 . We introduce an example of non-weakly graded ring that is α -weak for some α . Similarly, we establish and examine the concepts of α -non-degenerate, α -regular, α -strongly, α -first strongly graded rings, and α -weakly crossed product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信