A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh
求助PDF
{"title":"论分级环关于群同态的性质","authors":"A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh","doi":"10.1155/2023/3803873","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>G</mi> </math> </jats:inline-formula> be a group and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>R</mi> </math> </jats:inline-formula> be a <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>G</mi> </math> </jats:inline-formula>-graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>⟶</mo> <mi>G</mi> </math> </jats:inline-formula>. Next is to examine the new concepts compared to the known concepts. For example, it is known that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is weak if whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, then <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. In this article, we also introduce the concept of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings, where <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is said to be <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"> <mi>α</mi> </math> </jats:inline-formula>-weak whenever <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>α</mi> <mrow> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. Note that if <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\"> <mi>G</mi> </math> </jats:inline-formula> is abelian, then the concepts of weakly and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings coincide with respect to the group homomorphism <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\"> <mi>α</mi> <mfenced open=\"(\" close=\")\" separators=\"|\"> <mrow> <mi>g</mi> </mrow> </mfenced> <mo>=</mo> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula>. We introduce an example of non-weakly graded ring that is <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\"> <mi>α</mi> </math> </jats:inline-formula>-weak for some <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\"> <mi>α</mi> </math> </jats:inline-formula>. Similarly, we establish and examine the concepts of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\"> <mi>α</mi> </math> </jats:inline-formula>-non-degenerate, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\"> <mi>α</mi> </math> </jats:inline-formula>-regular, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\"> <mi>α</mi> </math> </jats:inline-formula>-strongly, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\"> <mi>α</mi> </math> </jats:inline-formula>-first strongly graded rings, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\"> <mi>α</mi> </math> </jats:inline-formula>-weakly crossed product.</jats:p>","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"7 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Properties of Graded Rings with respect to Group Homomorphisms\",\"authors\":\"A. Alshehry, R. Abu-Dawwas, Muhsen Al-Bashayreh\",\"doi\":\"10.1155/2023/3803873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <mi>G</mi> </math> </jats:inline-formula> be a group and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <mi>R</mi> </math> </jats:inline-formula> be a <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\"> <mi>G</mi> </math> </jats:inline-formula>-graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\"> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>⟶</mo> <mi>G</mi> </math> </jats:inline-formula>. Next is to examine the new concepts compared to the known concepts. For example, it is known that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\"> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is weak if whenever <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, then <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. In this article, we also introduce the concept of <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings, where <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\"> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>R</mi> <mo>,</mo> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> is said to be <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\"> <mi>α</mi> </math> </jats:inline-formula>-weak whenever <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\"> <mi>g</mi> <mo>∈</mo> <mi>G</mi> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\"> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>α</mi> <mrow> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>g</mi> </mrow> </mfenced> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula>. Note that if <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\"> <mi>G</mi> </math> </jats:inline-formula> is abelian, then the concepts of weakly and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly graded rings coincide with respect to the group homomorphism <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\"> <mi>α</mi> <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\"> <mrow> <mi>g</mi> </mrow> </mfenced> <mo>=</mo> <msup> <mrow> <mi>g</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula>. We introduce an example of non-weakly graded ring that is <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\"> <mi>α</mi> </math> </jats:inline-formula>-weak for some <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\"> <mi>α</mi> </math> </jats:inline-formula>. Similarly, we establish and examine the concepts of <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\"> <mi>α</mi> </math> </jats:inline-formula>-non-degenerate, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\"> <mi>α</mi> </math> </jats:inline-formula>-regular, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\"> <mi>α</mi> </math> </jats:inline-formula>-strongly, <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\"> <mi>α</mi> </math> </jats:inline-formula>-first strongly graded rings, and <jats:inline-formula> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M24\\\"> <mi>α</mi> </math> </jats:inline-formula>-weakly crossed product.</jats:p>\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3803873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3803873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On Properties of Graded Rings with respect to Group Homomorphisms
Let G be a group and R be a G -graded ring with non-zero unity. The goal of our article is reconsidering some well-known concepts on graded rings using a group homomorphism α : G ⟶ G . Next is to examine the new concepts compared to the known concepts. For example, it is known that R , G is weak if whenever g ∈ G such that R g = 0 , then R g − 1 = 0 . In this article, we also introduce the concept of α -weakly graded rings, where R , G is said to be α -weak whenever g ∈ G such that R g = 0 , and R α g = 0 . Note that if G is abelian, then the concepts of weakly and α -weakly graded rings coincide with respect to the group homomorphism α g = g − 1 . We introduce an example of non-weakly graded ring that is α -weak for some α . Similarly, we establish and examine the concepts of α -non-degenerate, α -regular, α -strongly, α -first strongly graded rings, and α -weakly crossed product.