复分析函数的分数导数和积分的新定义

Q1 Mathematics
Mohammad Abu-Ghuwaleh, Rania Saadeh
{"title":"复分析函数的分数导数和积分的新定义","authors":"Mohammad Abu-Ghuwaleh, Rania Saadeh","doi":"10.1080/25765299.2023.2281064","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce a ground-breaking approach to defining fractional calculus for a selected class of analytic functions. Our new definitions, based on a novel and intuitive understanding of fractional derivatives and integrals, offer improved mathematical tractability for a variety of applications, including physics, engineering and finance. Our approach significantly simplifies the complexity of mathematical functions compared to the traditional Riemann-Liouville approach, by using simple functions rather than special functions, while preserving the intrinsic sense of fractional calculus. This article not only presents our proposed definitions but also provides a thorough analysis of their properties and advantages. The conclusion of this paper discusses the potential for future research in the field of fractional calculus.","PeriodicalId":37239,"journal":{"name":"Arab Journal of Basic and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New definitions of fractional derivatives and integrals for complex analytic functions\",\"authors\":\"Mohammad Abu-Ghuwaleh, Rania Saadeh\",\"doi\":\"10.1080/25765299.2023.2281064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce a ground-breaking approach to defining fractional calculus for a selected class of analytic functions. Our new definitions, based on a novel and intuitive understanding of fractional derivatives and integrals, offer improved mathematical tractability for a variety of applications, including physics, engineering and finance. Our approach significantly simplifies the complexity of mathematical functions compared to the traditional Riemann-Liouville approach, by using simple functions rather than special functions, while preserving the intrinsic sense of fractional calculus. This article not only presents our proposed definitions but also provides a thorough analysis of their properties and advantages. The conclusion of this paper discusses the potential for future research in the field of fractional calculus.\",\"PeriodicalId\":37239,\"journal\":{\"name\":\"Arab Journal of Basic and Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25765299.2023.2281064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25765299.2023.2281064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们介绍了一种开创性的方法,即为选定的一类解析函数定义分数微积分。我们的新定义基于对分数导数和积分新颖直观的理解,为物理学、工程学和金融学等各种应用提供了更好的数学可操作性。与传统的黎曼-刘维尔方法相比,我们的方法通过使用简单函数而非特殊函数,大大简化了数学函数的复杂性,同时保留了分数微积分的内在意义。本文不仅介绍了我们提出的定义,还对其特性和优势进行了深入分析。本文的结论讨论了未来在分数微积分领域的研究潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New definitions of fractional derivatives and integrals for complex analytic functions
Abstract In this paper, we introduce a ground-breaking approach to defining fractional calculus for a selected class of analytic functions. Our new definitions, based on a novel and intuitive understanding of fractional derivatives and integrals, offer improved mathematical tractability for a variety of applications, including physics, engineering and finance. Our approach significantly simplifies the complexity of mathematical functions compared to the traditional Riemann-Liouville approach, by using simple functions rather than special functions, while preserving the intrinsic sense of fractional calculus. This article not only presents our proposed definitions but also provides a thorough analysis of their properties and advantages. The conclusion of this paper discusses the potential for future research in the field of fractional calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Basic and Applied Sciences
Arab Journal of Basic and Applied Sciences Mathematics-Mathematics (all)
CiteScore
5.80
自引率
0.00%
发文量
31
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信