Kitsune 数据集示例的物联网流量分形维度统计特征

O. Shelukhin, S. Rybakov
{"title":"Kitsune 数据集示例的物联网流量分形维度统计特征","authors":"O. Shelukhin, S. Rybakov","doi":"10.31854/1813-324x-2023-9-5-112-119","DOIUrl":null,"url":null,"abstract":"The paper considers a method for estimating the fractal properties of traffic, and also evaluates the statistical parameters of the fractal dimension of IoT traffic. An analysis of real traffic with attacks from the Kitsune dump and an analysis of the fractal properties of traffic in normal mode and under the influence of attacks such as SSDP Flood, Mirai, OS Scan showed that jumps in the fractal dimension of traffic when attacks occur can be used to create algorithms for detecting computer attacks in IoT networks. Studies have shown that in the case of online analysis of network traffic, when assessing the RF, preference should be given to the modified algorithm for estimating the Hurst exponent in a sliding analysis window.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT Traffic Fractal Dimension Statistical Characteristics on the Kitsune Dataset Example\",\"authors\":\"O. Shelukhin, S. Rybakov\",\"doi\":\"10.31854/1813-324x-2023-9-5-112-119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers a method for estimating the fractal properties of traffic, and also evaluates the statistical parameters of the fractal dimension of IoT traffic. An analysis of real traffic with attacks from the Kitsune dump and an analysis of the fractal properties of traffic in normal mode and under the influence of attacks such as SSDP Flood, Mirai, OS Scan showed that jumps in the fractal dimension of traffic when attacks occur can be used to create algorithms for detecting computer attacks in IoT networks. Studies have shown that in the case of online analysis of network traffic, when assessing the RF, preference should be given to the modified algorithm for estimating the Hurst exponent in a sliding analysis window.\",\"PeriodicalId\":298883,\"journal\":{\"name\":\"Proceedings of Telecommunication Universities\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Telecommunication Universities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31854/1813-324x-2023-9-5-112-119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2023-9-5-112-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一种估算流量分形属性的方法,还评估了物联网流量分形维度的统计参数。通过对 Kitsune dump 中带有攻击的真实流量进行分析,以及对正常模式下和 SSDP Flood、Mirai、OS Scan 等攻击影响下的流量分形属性进行分析,发现攻击发生时流量分形维度的跃变可用于创建检测物联网网络中计算机攻击的算法。研究表明,在对网络流量进行在线分析时,在评估射频时,应优先考虑在滑动分析窗口中估计赫斯特指数的修正算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Traffic Fractal Dimension Statistical Characteristics on the Kitsune Dataset Example
The paper considers a method for estimating the fractal properties of traffic, and also evaluates the statistical parameters of the fractal dimension of IoT traffic. An analysis of real traffic with attacks from the Kitsune dump and an analysis of the fractal properties of traffic in normal mode and under the influence of attacks such as SSDP Flood, Mirai, OS Scan showed that jumps in the fractal dimension of traffic when attacks occur can be used to create algorithms for detecting computer attacks in IoT networks. Studies have shown that in the case of online analysis of network traffic, when assessing the RF, preference should be given to the modified algorithm for estimating the Hurst exponent in a sliding analysis window.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信