利用埃克纳方程对高角度油井声波到达时间进行数值模拟和解释

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2023-11-15 DOI:10.1190/geo2023-0303.1
Jingxuan Liu, C. Torres‐Verdín
{"title":"利用埃克纳方程对高角度油井声波到达时间进行数值模拟和解释","authors":"Jingxuan Liu, C. Torres‐Verdín","doi":"10.1190/geo2023-0303.1","DOIUrl":null,"url":null,"abstract":"Borehole sonic measurements acquired in high-angle wells in general do not exhibit axial symmetry in the vicinity of bed boundaries and thin layers, while sonic waveforms remain strongly affected by the corresponding contrast in elastic properties across bed boundaries. The latter conditions often demand sophisticated and time-consuming numerical modeling to reliably interpret borehole sonic measurements into rock elastic properties. We circumvent this problem by implementing the eikonal equation based on the fast-marching method to (a) calculate first-arrival times of borehole acoustic waveforms, and (b) trace ray paths between sonic transmitters and receivers in high-angle wells. Furthermore, first-arrival times of compressional and shear waves are calculated at different azimuthal receivers included in wireline borehole sonic instruments and are verified against waveforms obtained via three-dimensional (3D) finite-difference time-domain simulations (3D-FDTD). Calculations of travel times, wavefronts, and ray paths for challenging synthetic examples with effects due to formation anisotropy and different inclination angles show a transition from a head wave to a boundary-induced refracted wave as the borehole sonic instrument moves across bed boundaries. Apparent slownesses obtained from first-arrival times at receivers can be faster or slower than the actual slownesses of rock formations surrounding the borehole, depending on formation dip, azimuth, anisotropy, and bed boundaries. Differences in apparent acoustic slownesses measured by adjacent azimuthal receivers reflect the behavior of wave propagation within the borehole and across bed boundaries and can be used to estimate bed-boundary orientation and anisotropy. The high-frequency approximation of travel times obtained with the eikonal equation saves more than 99% of calculation time with acceptable numerical errors, with respect to rigorous time-domain numerical simulation of the wave equation, and is therefore amenable to inversion-based measurement interpretation. Apparent slownesses extracted from acoustic arrival times suggest a potential method for estimating formation elastic properties and inferring boundary geometries","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"63 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and interpretation of sonic arrival times in high-angle wells using the eikonal equation\",\"authors\":\"Jingxuan Liu, C. Torres‐Verdín\",\"doi\":\"10.1190/geo2023-0303.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Borehole sonic measurements acquired in high-angle wells in general do not exhibit axial symmetry in the vicinity of bed boundaries and thin layers, while sonic waveforms remain strongly affected by the corresponding contrast in elastic properties across bed boundaries. The latter conditions often demand sophisticated and time-consuming numerical modeling to reliably interpret borehole sonic measurements into rock elastic properties. We circumvent this problem by implementing the eikonal equation based on the fast-marching method to (a) calculate first-arrival times of borehole acoustic waveforms, and (b) trace ray paths between sonic transmitters and receivers in high-angle wells. Furthermore, first-arrival times of compressional and shear waves are calculated at different azimuthal receivers included in wireline borehole sonic instruments and are verified against waveforms obtained via three-dimensional (3D) finite-difference time-domain simulations (3D-FDTD). Calculations of travel times, wavefronts, and ray paths for challenging synthetic examples with effects due to formation anisotropy and different inclination angles show a transition from a head wave to a boundary-induced refracted wave as the borehole sonic instrument moves across bed boundaries. Apparent slownesses obtained from first-arrival times at receivers can be faster or slower than the actual slownesses of rock formations surrounding the borehole, depending on formation dip, azimuth, anisotropy, and bed boundaries. Differences in apparent acoustic slownesses measured by adjacent azimuthal receivers reflect the behavior of wave propagation within the borehole and across bed boundaries and can be used to estimate bed-boundary orientation and anisotropy. The high-frequency approximation of travel times obtained with the eikonal equation saves more than 99% of calculation time with acceptable numerical errors, with respect to rigorous time-domain numerical simulation of the wave equation, and is therefore amenable to inversion-based measurement interpretation. Apparent slownesses extracted from acoustic arrival times suggest a potential method for estimating formation elastic properties and inferring boundary geometries\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"63 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0303.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0303.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在高角度井中获得的井眼声波测量结果在床层边界和薄层附近一般不会表现出轴对称性,而声波波形仍会受到床层边界弹性特性的相应对比的强烈影响。要将井眼声波测量结果可靠地解释为岩石弹性特性,后一种情况往往需要复杂而耗时的数值建模。我们通过基于快速行进法的 eikonal 方程来规避这一问题,从而(a)计算井眼声波波形的首次到达时间,(b)追踪高角度井中声波发射器和接收器之间的射线路径。此外,还计算了线性井眼声波仪器中不同方位角接收器的压缩波和剪切波的首次到达时间,并与通过三维(3D)有限差分时域模拟(3D-FDTD)获得的波形进行了验证。计算了具有挑战性的合成示例的行进时间、波面和射线路径,这些示例受到地层各向异性和不同倾角的影响,结果表明当井眼声波仪器穿过床层边界时,会从顶波过渡到边界引起的折射波。根据接收器的初至时间得到的表观慢度可能比钻孔周围岩层的实际慢度更快或更慢,这取决于岩层的倾角、方位角、各向异性和床层边界。相邻方位角接收器测得的表观声学慢度差异反映了波在井眼内和穿过岩床边界时的传播行为,可用来估计岩床边界方位和各向异性。与波方程的严格时域数值模拟相比,利用 eikonal 方程获得的高频近似传播时间可节省 99% 以上的计算时间,且数值误差可接受,因此可用于基于反演的测量解释。从声波到达时间中提取的表观慢度为估计地层弹性特性和推断边界几何形状提供了一种潜在的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation and interpretation of sonic arrival times in high-angle wells using the eikonal equation
Borehole sonic measurements acquired in high-angle wells in general do not exhibit axial symmetry in the vicinity of bed boundaries and thin layers, while sonic waveforms remain strongly affected by the corresponding contrast in elastic properties across bed boundaries. The latter conditions often demand sophisticated and time-consuming numerical modeling to reliably interpret borehole sonic measurements into rock elastic properties. We circumvent this problem by implementing the eikonal equation based on the fast-marching method to (a) calculate first-arrival times of borehole acoustic waveforms, and (b) trace ray paths between sonic transmitters and receivers in high-angle wells. Furthermore, first-arrival times of compressional and shear waves are calculated at different azimuthal receivers included in wireline borehole sonic instruments and are verified against waveforms obtained via three-dimensional (3D) finite-difference time-domain simulations (3D-FDTD). Calculations of travel times, wavefronts, and ray paths for challenging synthetic examples with effects due to formation anisotropy and different inclination angles show a transition from a head wave to a boundary-induced refracted wave as the borehole sonic instrument moves across bed boundaries. Apparent slownesses obtained from first-arrival times at receivers can be faster or slower than the actual slownesses of rock formations surrounding the borehole, depending on formation dip, azimuth, anisotropy, and bed boundaries. Differences in apparent acoustic slownesses measured by adjacent azimuthal receivers reflect the behavior of wave propagation within the borehole and across bed boundaries and can be used to estimate bed-boundary orientation and anisotropy. The high-frequency approximation of travel times obtained with the eikonal equation saves more than 99% of calculation time with acceptable numerical errors, with respect to rigorous time-domain numerical simulation of the wave equation, and is therefore amenable to inversion-based measurement interpretation. Apparent slownesses extracted from acoustic arrival times suggest a potential method for estimating formation elastic properties and inferring boundary geometries
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信