Qingsheng Li, Changming Chen, Yongqing Zhu, Yunchu Wang, Chang Liu, Hongle Liang, Zhen Li, Zhaofeng Zhang, Li Yang
{"title":"基于自适应 ADMM 的输配电系统全过程分布式修复","authors":"Qingsheng Li, Changming Chen, Yongqing Zhu, Yunchu Wang, Chang Liu, Hongle Liang, Zhen Li, Zhaofeng Zhang, Li Yang","doi":"10.3389/fenrg.2023.1304945","DOIUrl":null,"url":null,"abstract":"In the event of a major power outage in the power systems, there is an urgent need to investigate entire-process coordinated restoration strategies for the transmission systems (TSs) and distribution systems (DSs), aiming to accelerate the restoration speed of generating units, network reconfiguration, and load restoration. Furthermore, it is imperative to address the multiple uncertainties that arise during the restoration process to mitigate potential security risks associated with the restoration. Hence, an adaptive ADMM-based entire-process distributed restoration method of TSs and DSs considering CVaR is proposed in this paper. Firstly, an entire-process distributed restoration model of TSs and DSs considering CVaR is proposed to maximize the total restoration benefits of TSs and DSs. Then, an adaptive ADMM-based distributed solving algorithm for the coordinated restoration model of the TSs and DSs is introduced, which incorporates adaptive penalty parameter adjustments, leading to faster convergence compared to the standard ADMM. Finally, case studies on an improved 179-bus transmission system are employed to verify that the proposed restoration method can achieve higher restoration benefits and faster convergence speed compared to existing restoration models.","PeriodicalId":503838,"journal":{"name":"Frontiers in Energy Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive ADMM-based entire-process distributed restoration of transmission and distribution systems\",\"authors\":\"Qingsheng Li, Changming Chen, Yongqing Zhu, Yunchu Wang, Chang Liu, Hongle Liang, Zhen Li, Zhaofeng Zhang, Li Yang\",\"doi\":\"10.3389/fenrg.2023.1304945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the event of a major power outage in the power systems, there is an urgent need to investigate entire-process coordinated restoration strategies for the transmission systems (TSs) and distribution systems (DSs), aiming to accelerate the restoration speed of generating units, network reconfiguration, and load restoration. Furthermore, it is imperative to address the multiple uncertainties that arise during the restoration process to mitigate potential security risks associated with the restoration. Hence, an adaptive ADMM-based entire-process distributed restoration method of TSs and DSs considering CVaR is proposed in this paper. Firstly, an entire-process distributed restoration model of TSs and DSs considering CVaR is proposed to maximize the total restoration benefits of TSs and DSs. Then, an adaptive ADMM-based distributed solving algorithm for the coordinated restoration model of the TSs and DSs is introduced, which incorporates adaptive penalty parameter adjustments, leading to faster convergence compared to the standard ADMM. Finally, case studies on an improved 179-bus transmission system are employed to verify that the proposed restoration method can achieve higher restoration benefits and faster convergence speed compared to existing restoration models.\",\"PeriodicalId\":503838,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2023.1304945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenrg.2023.1304945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive ADMM-based entire-process distributed restoration of transmission and distribution systems
In the event of a major power outage in the power systems, there is an urgent need to investigate entire-process coordinated restoration strategies for the transmission systems (TSs) and distribution systems (DSs), aiming to accelerate the restoration speed of generating units, network reconfiguration, and load restoration. Furthermore, it is imperative to address the multiple uncertainties that arise during the restoration process to mitigate potential security risks associated with the restoration. Hence, an adaptive ADMM-based entire-process distributed restoration method of TSs and DSs considering CVaR is proposed in this paper. Firstly, an entire-process distributed restoration model of TSs and DSs considering CVaR is proposed to maximize the total restoration benefits of TSs and DSs. Then, an adaptive ADMM-based distributed solving algorithm for the coordinated restoration model of the TSs and DSs is introduced, which incorporates adaptive penalty parameter adjustments, leading to faster convergence compared to the standard ADMM. Finally, case studies on an improved 179-bus transmission system are employed to verify that the proposed restoration method can achieve higher restoration benefits and faster convergence speed compared to existing restoration models.