Qingtian Zou, Lan Zhang, A. Singhal, Xiaoyan Sun, Peng Liu
{"title":"网络攻击神经网络探测器分析","authors":"Qingtian Zou, Lan Zhang, A. Singhal, Xiaoyan Sun, Peng Liu","doi":"10.3233/jcs-230031","DOIUrl":null,"url":null,"abstract":"While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate whether the adversary could fight back during the next phase of the arms race. In particular, noticing that none of the existing adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of neural network detectors for network attacks\",\"authors\":\"Qingtian Zou, Lan Zhang, A. Singhal, Xiaoyan Sun, Peng Liu\",\"doi\":\"10.3233/jcs-230031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate whether the adversary could fight back during the next phase of the arms race. In particular, noticing that none of the existing adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack.\",\"PeriodicalId\":46074,\"journal\":{\"name\":\"Journal of Computer Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-230031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-230031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Analysis of neural network detectors for network attacks
While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate whether the adversary could fight back during the next phase of the arms race. In particular, noticing that none of the existing adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack.
期刊介绍:
The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.