二元整数群上傅里叶级数的变参数设置塞萨罗手段的几乎无处收敛性

Q4 Mathematics
Adimasu Ateneh Tilahun
{"title":"二元整数群上傅里叶级数的变参数设置塞萨罗手段的几乎无处收敛性","authors":"Adimasu Ateneh Tilahun","doi":"10.24193/mathcluj.2023.2.01","DOIUrl":null,"url":null,"abstract":"In this paper we prove that the maximal operator of Cesaro-means for one-dimensional Fourier series on the group of 2-adic integers is of weak type (L^{1}, L^{1}). Moreover, we prove the almost everywhere convergence of Cesaro means of integrable functions.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost everywhere convergence of varying-parameter setting Cesaro means of Fourier series on the group of 2-adic integers\",\"authors\":\"Adimasu Ateneh Tilahun\",\"doi\":\"10.24193/mathcluj.2023.2.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that the maximal operator of Cesaro-means for one-dimensional Fourier series on the group of 2-adic integers is of weak type (L^{1}, L^{1}). Moreover, we prove the almost everywhere convergence of Cesaro means of integrable functions.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.2.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了二元整数群上一维傅里叶级数的塞萨罗手段最大算子为弱类型 (L^{1}, L^{1})。此外,我们还证明了可积分函数的塞萨罗均值几乎无处不收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost everywhere convergence of varying-parameter setting Cesaro means of Fourier series on the group of 2-adic integers
In this paper we prove that the maximal operator of Cesaro-means for one-dimensional Fourier series on the group of 2-adic integers is of weak type (L^{1}, L^{1}). Moreover, we prove the almost everywhere convergence of Cesaro means of integrable functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信