t$ 展开单项式理想的计算方法

IF 0.5 Q3 MATHEMATICS
Luca Amata
{"title":"t$ 展开单项式理想的计算方法","authors":"Luca Amata","doi":"10.24330/ieja.1402973","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field and $S=K[x_1,\\ldots,x_n]$ a standard polynomial ring over $K$. In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$. Some technical tools allowing to compute the cardinality of $t$-spread strongly stable sets avoiding their construction are also presented. Such functions are also implemented in a \\emph{Macaulay2} package, \\texttt{TSpreadIdeals}, to ease the computation of well-known results about algebraic invariants for $t$-spread ideals.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational methods for $t$-spread monomial ideals\",\"authors\":\"Luca Amata\",\"doi\":\"10.24330/ieja.1402973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field and $S=K[x_1,\\\\ldots,x_n]$ a standard polynomial ring over $K$. In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$. Some technical tools allowing to compute the cardinality of $t$-spread strongly stable sets avoiding their construction are also presented. Such functions are also implemented in a \\\\emph{Macaulay2} package, \\\\texttt{TSpreadIdeals}, to ease the computation of well-known results about algebraic invariants for $t$-spread ideals.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1402973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1402973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 $K$ 是一个域,$S=K[x_1,\ldots,x_n]$ 是超过 $K$ 的标准多项式环。 在本文中,我们给出了新的组合算法,以计算包含给定的 $S$ 的 $t$ 展开单项式集的最小 $t$ 展开词典集和最小 $t$ 展开强稳定集。 此外,还介绍了一些技术工具,用于计算避免其构造的 t$ 展开强稳定集的心率。 这些函数也在\emph{Macaulay2}包\texttt{TSpreadIdeals}中实现,以方便计算关于 $t$ 展开理想的代数不变式的著名结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational methods for $t$-spread monomial ideals
Let $K$ be a field and $S=K[x_1,\ldots,x_n]$ a standard polynomial ring over $K$. In this paper, we give new combinatorial algorithms to compute the smallest $t$-spread lexicographic set and the smallest $t$-spread strongly stable set containing a given set of $t$-spread monomials of $S$. Some technical tools allowing to compute the cardinality of $t$-spread strongly stable sets avoiding their construction are also presented. Such functions are also implemented in a \emph{Macaulay2} package, \texttt{TSpreadIdeals}, to ease the computation of well-known results about algebraic invariants for $t$-spread ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信