A. Slama, S. Fkiri, F. Mezni, Boutheina Stiti, Julio SALCEDO-CASTRO, I. Touhami, Marwa Khammassi, A. Khaldi, Zouheir Nasr
{"title":"菌根对柞树生长和生理表现的影响","authors":"A. Slama, S. Fkiri, F. Mezni, Boutheina Stiti, Julio SALCEDO-CASTRO, I. Touhami, Marwa Khammassi, A. Khaldi, Zouheir Nasr","doi":"10.15835/nbha51413290","DOIUrl":null,"url":null,"abstract":"The development of mycorrhiza could contribute to strengthening the resilience of forest ecosystems to climate change. Several mycorrhizal fungi are known for their valuable effect in increasing plant performances and adaptation to stressful environmental conditions. Thereby, this research aims to investigate how Terfezia boudieri (Chatin) mycorrhizal fungi affects the growth (primary root length, above-ground plant weight) and the physiological behaviour (net photosynthesis, responses to intercellular [CO2] and the intensity of photosyntically active radiation) of Quercus subsp. coccifera and Q. suber L. Inoculated and non-inoculated seedlings of the two Quercus species were grown in one-liter pots in the greenhouse, with a temperature that ranged from 25 to 30 °C, natural lighting and an irrigation applied twice a week with top water. Results revealed that primary root length and the above-ground biomass increased with mycorrhization. In addition, mycorrhization promoted net photosynthesis (at 400 ppm and at saturation point), the apparent quantum yield, the water use efficiency, and the photosynthetic pigments contents. However, inoculation decreased the light compensation point for both species. Effectiveness of T. boudieri inoculation on Quercus sp. performance, highlights the potential of the mycorrhization process to improve forest management and resilience to climate change.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":"IE-29 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mycorrhization on growth and physiology performance of Quercus species\",\"authors\":\"A. Slama, S. Fkiri, F. Mezni, Boutheina Stiti, Julio SALCEDO-CASTRO, I. Touhami, Marwa Khammassi, A. Khaldi, Zouheir Nasr\",\"doi\":\"10.15835/nbha51413290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of mycorrhiza could contribute to strengthening the resilience of forest ecosystems to climate change. Several mycorrhizal fungi are known for their valuable effect in increasing plant performances and adaptation to stressful environmental conditions. Thereby, this research aims to investigate how Terfezia boudieri (Chatin) mycorrhizal fungi affects the growth (primary root length, above-ground plant weight) and the physiological behaviour (net photosynthesis, responses to intercellular [CO2] and the intensity of photosyntically active radiation) of Quercus subsp. coccifera and Q. suber L. Inoculated and non-inoculated seedlings of the two Quercus species were grown in one-liter pots in the greenhouse, with a temperature that ranged from 25 to 30 °C, natural lighting and an irrigation applied twice a week with top water. Results revealed that primary root length and the above-ground biomass increased with mycorrhization. In addition, mycorrhization promoted net photosynthesis (at 400 ppm and at saturation point), the apparent quantum yield, the water use efficiency, and the photosynthetic pigments contents. However, inoculation decreased the light compensation point for both species. Effectiveness of T. boudieri inoculation on Quercus sp. performance, highlights the potential of the mycorrhization process to improve forest management and resilience to climate change.\",\"PeriodicalId\":19364,\"journal\":{\"name\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"volume\":\"IE-29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15835/nbha51413290\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15835/nbha51413290","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effect of mycorrhization on growth and physiology performance of Quercus species
The development of mycorrhiza could contribute to strengthening the resilience of forest ecosystems to climate change. Several mycorrhizal fungi are known for their valuable effect in increasing plant performances and adaptation to stressful environmental conditions. Thereby, this research aims to investigate how Terfezia boudieri (Chatin) mycorrhizal fungi affects the growth (primary root length, above-ground plant weight) and the physiological behaviour (net photosynthesis, responses to intercellular [CO2] and the intensity of photosyntically active radiation) of Quercus subsp. coccifera and Q. suber L. Inoculated and non-inoculated seedlings of the two Quercus species were grown in one-liter pots in the greenhouse, with a temperature that ranged from 25 to 30 °C, natural lighting and an irrigation applied twice a week with top water. Results revealed that primary root length and the above-ground biomass increased with mycorrhization. In addition, mycorrhization promoted net photosynthesis (at 400 ppm and at saturation point), the apparent quantum yield, the water use efficiency, and the photosynthetic pigments contents. However, inoculation decreased the light compensation point for both species. Effectiveness of T. boudieri inoculation on Quercus sp. performance, highlights the potential of the mycorrhization process to improve forest management and resilience to climate change.
期刊介绍:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.