惯性力和重力主导的层状砂岩中的二氧化碳毛细捕集

Q1 Physics and Astronomy
Yingwen Li, Yongfei Yang, Mingzhe Dong
{"title":"惯性力和重力主导的层状砂岩中的二氧化碳毛细捕集","authors":"Yingwen Li, Yongfei Yang, Mingzhe Dong","doi":"10.46690/capi.2024.01.03","DOIUrl":null,"url":null,"abstract":": Capillary trapping is an important strategy to prevent CO 2 from escaping. Meanwhile, under immiscible conditions, CO 2 may travel upwards by gravity. Studying the long-term effects of gravity and layered heterogeneity on CO 2 transport is crucial for ensuring CO 2 storage security in aquifers. In this work, fluid flow experiments driven by inertial force and gravity are conducted in a specially constructed layered sandstone. Whether driven by inertial force or gravity, the variation in CO 2 distribution in the high-permeability layer is consistently the most significant factor. In the low-permeability layer, the saturation and capillary pressure distribution of CO 2 clusters vary less and the geometric shapes are also more complex, thus the CO 2 capillary trapping in this layer is more stable. This work demonstrates that the low-permeability layer can effectively prevent CO 2 from escaping upwards when the permeability ratio between layers approaches two.","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"58 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 capillary trapping in layered sandstone dominated by inertial force and gravity\",\"authors\":\"Yingwen Li, Yongfei Yang, Mingzhe Dong\",\"doi\":\"10.46690/capi.2024.01.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Capillary trapping is an important strategy to prevent CO 2 from escaping. Meanwhile, under immiscible conditions, CO 2 may travel upwards by gravity. Studying the long-term effects of gravity and layered heterogeneity on CO 2 transport is crucial for ensuring CO 2 storage security in aquifers. In this work, fluid flow experiments driven by inertial force and gravity are conducted in a specially constructed layered sandstone. Whether driven by inertial force or gravity, the variation in CO 2 distribution in the high-permeability layer is consistently the most significant factor. In the low-permeability layer, the saturation and capillary pressure distribution of CO 2 clusters vary less and the geometric shapes are also more complex, thus the CO 2 capillary trapping in this layer is more stable. This work demonstrates that the low-permeability layer can effectively prevent CO 2 from escaping upwards when the permeability ratio between layers approaches two.\",\"PeriodicalId\":34047,\"journal\":{\"name\":\"Capillarity\",\"volume\":\"58 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Capillarity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/capi.2024.01.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/capi.2024.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

:毛细管捕集是防止 CO 2 逸出的重要策略。同时,在不混溶条件下,二氧化碳可能会在重力作用下向上移动。研究重力和层状异质性对二氧化碳迁移的长期影响对于确保含水层中二氧化碳的储存安全至关重要。在这项工作中,我们在专门建造的层状砂岩中进行了由惯性力和重力驱动的流体流动实验。无论是惯性力还是重力驱动,高渗透层中二氧化碳分布的变化始终是最重要的因素。在低渗透率层中,CO 2 团块的饱和度和毛细管压力分布变化较小,几何形状也更为复杂,因此该层的 CO 2 毛细管捕集更为稳定。这项研究表明,当层间渗透率比接近 2 时,低渗透层可有效阻止 CO 2 向上逸出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2 capillary trapping in layered sandstone dominated by inertial force and gravity
: Capillary trapping is an important strategy to prevent CO 2 from escaping. Meanwhile, under immiscible conditions, CO 2 may travel upwards by gravity. Studying the long-term effects of gravity and layered heterogeneity on CO 2 transport is crucial for ensuring CO 2 storage security in aquifers. In this work, fluid flow experiments driven by inertial force and gravity are conducted in a specially constructed layered sandstone. Whether driven by inertial force or gravity, the variation in CO 2 distribution in the high-permeability layer is consistently the most significant factor. In the low-permeability layer, the saturation and capillary pressure distribution of CO 2 clusters vary less and the geometric shapes are also more complex, thus the CO 2 capillary trapping in this layer is more stable. This work demonstrates that the low-permeability layer can effectively prevent CO 2 from escaping upwards when the permeability ratio between layers approaches two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Capillarity
Capillarity Physics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍: Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome. The following topics are within (but not limited to) the scope of capillarity: i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials ii) Fundamental mechanisms of capillarity aided by theory and experiments iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids v) New approaches and technologies on capillarity Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信