共享和自动分析高通量聚合物 MD 模拟原始数据的云平台

T. Xie, Ha-Kyung Kwon, D. Schweigert, Sheng Gong, A. France-Lanord, A. Khajeh, E. Crabb, Michael Puzon, Chris Fajardo, Will Powelson, Y. Shao-horn, Jeffrey C. Grossman
{"title":"共享和自动分析高通量聚合物 MD 模拟原始数据的云平台","authors":"T. Xie, Ha-Kyung Kwon, D. Schweigert, Sheng Gong, A. France-Lanord, A. Khajeh, E. Crabb, Michael Puzon, Chris Fajardo, Will Powelson, Y. Shao-horn, Jeffrey C. Grossman","doi":"10.1063/5.0160937","DOIUrl":null,"url":null,"abstract":"Open material databases storing thousands of material structures and their properties have become the cornerstone of modern computational materials science. Yet, the raw simulation outputs are generally not shared due to their huge size. In this work, we describe a cloud-based platform to enable fast post-processing of the trajectories and to facilitate sharing of the raw data. As an initial demonstration, our database includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes (5.7 terabytes of data). We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract ion transport properties from the raw data using expert-designed functions and machine learning models. The analysis is run automatically on the cloud, and the results are uploaded onto an open database. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Finally, we create a front-end user interface at https://www.htpmd.matr.io/ for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the materials science community.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations\",\"authors\":\"T. Xie, Ha-Kyung Kwon, D. Schweigert, Sheng Gong, A. France-Lanord, A. Khajeh, E. Crabb, Michael Puzon, Chris Fajardo, Will Powelson, Y. Shao-horn, Jeffrey C. Grossman\",\"doi\":\"10.1063/5.0160937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open material databases storing thousands of material structures and their properties have become the cornerstone of modern computational materials science. Yet, the raw simulation outputs are generally not shared due to their huge size. In this work, we describe a cloud-based platform to enable fast post-processing of the trajectories and to facilitate sharing of the raw data. As an initial demonstration, our database includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes (5.7 terabytes of data). We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract ion transport properties from the raw data using expert-designed functions and machine learning models. The analysis is run automatically on the cloud, and the results are uploaded onto an open database. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Finally, we create a front-end user interface at https://www.htpmd.matr.io/ for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the materials science community.\",\"PeriodicalId\":502250,\"journal\":{\"name\":\"APL Machine Learning\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0160937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0160937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存储数千种材料结构及其特性的开放式材料数据库已成为现代计算材料科学的基石。然而,由于原始模拟输出体积庞大,通常无法共享。在这项工作中,我们介绍了一个基于云的平台,该平台可实现轨迹的快速后处理,并促进原始数据的共享。作为初步演示,我们的数据库包括 6286 个非晶聚合物电解质分子动力学轨迹(5.7 TB 数据)。我们在 https://github.com/TRI-AMDD/htp_md 上创建了一个公共分析库,利用专家设计的函数和机器学习模型从原始数据中提取离子传输特性。分析在云端自动运行,结果上传到开放数据库。我们的平台鼓励用户通过公共接口贡献新的轨迹数据和分析功能。最后,我们在 https://www.htpmd.matr.io/ 上创建了一个前端用户界面,用于浏览和可视化我们的数据。我们设想该平台将成为材料科学界共享原始数据和新见解的一种新方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations
Open material databases storing thousands of material structures and their properties have become the cornerstone of modern computational materials science. Yet, the raw simulation outputs are generally not shared due to their huge size. In this work, we describe a cloud-based platform to enable fast post-processing of the trajectories and to facilitate sharing of the raw data. As an initial demonstration, our database includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes (5.7 terabytes of data). We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract ion transport properties from the raw data using expert-designed functions and machine learning models. The analysis is run automatically on the cloud, and the results are uploaded onto an open database. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Finally, we create a front-end user interface at https://www.htpmd.matr.io/ for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the materials science community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信