{"title":"利用卫星和雷达观测数据验证 HRRR 针对不同天气现象模拟的云特性的方法","authors":"S. M. Griffin, J. Otkin, William E. Lewis","doi":"10.1175/waf-d-23-0109.1","DOIUrl":null,"url":null,"abstract":"In this study, we evaluate the ability of the High-Resolution Rapid Refresh (HRRR) model to forecast cloud characteristics through comparison of observed and simulated satellite brightness temperatures (BTs) and radar reflectivity during different weather phenomena in December 2021: the Mayfield, KY tornado on 11 Dec, a heavy snow event in Minnesota from 10-11 Dec, and the Midwest Derecho on 15 Dec. This is done to illustrate the importance of examining model accuracy across a range of weather phenomena. Observation and forecast objects were created using the Method for Object-Based Diagnostic Evaluation (MODE). HRRR accurately depicted the spatial displacements between observation cloud (defined using BTs) and radar reflectivity objects, namely the centers of cloud objects are to the east of the radar objects for the tornado and derecho events, and generally west of the radar objects for the snow event. However, HRRR had higher (less intense) simulated BTs and higher (more intense) radar reflectivity than the observations for the tornado event. Simulated radar reflectivity is higher and BTs are lower than the observations during the middle of the snow event. Also, simulated radar reflectivity is higher and BTs are lower than the observations during the derecho event. Of the three weather events, the HRRR forecasts are most accurate for the snow event, based on the Object-based Threat Score, followed by the derecho and tornado events. The tornado event has lower accuracy because matches between paired simulated and observation objects are worse than for the snow event, with less similarity in size forecast objects and greater distance between paired object centers.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"28 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for Validating HRRR Simulated Cloud Properties for Different Weather Phenomena using Satellite and Radar Observations\",\"authors\":\"S. M. Griffin, J. Otkin, William E. Lewis\",\"doi\":\"10.1175/waf-d-23-0109.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we evaluate the ability of the High-Resolution Rapid Refresh (HRRR) model to forecast cloud characteristics through comparison of observed and simulated satellite brightness temperatures (BTs) and radar reflectivity during different weather phenomena in December 2021: the Mayfield, KY tornado on 11 Dec, a heavy snow event in Minnesota from 10-11 Dec, and the Midwest Derecho on 15 Dec. This is done to illustrate the importance of examining model accuracy across a range of weather phenomena. Observation and forecast objects were created using the Method for Object-Based Diagnostic Evaluation (MODE). HRRR accurately depicted the spatial displacements between observation cloud (defined using BTs) and radar reflectivity objects, namely the centers of cloud objects are to the east of the radar objects for the tornado and derecho events, and generally west of the radar objects for the snow event. However, HRRR had higher (less intense) simulated BTs and higher (more intense) radar reflectivity than the observations for the tornado event. Simulated radar reflectivity is higher and BTs are lower than the observations during the middle of the snow event. Also, simulated radar reflectivity is higher and BTs are lower than the observations during the derecho event. Of the three weather events, the HRRR forecasts are most accurate for the snow event, based on the Object-based Threat Score, followed by the derecho and tornado events. The tornado event has lower accuracy because matches between paired simulated and observation objects are worse than for the snow event, with less similarity in size forecast objects and greater distance between paired object centers.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0109.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0109.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Methods for Validating HRRR Simulated Cloud Properties for Different Weather Phenomena using Satellite and Radar Observations
In this study, we evaluate the ability of the High-Resolution Rapid Refresh (HRRR) model to forecast cloud characteristics through comparison of observed and simulated satellite brightness temperatures (BTs) and radar reflectivity during different weather phenomena in December 2021: the Mayfield, KY tornado on 11 Dec, a heavy snow event in Minnesota from 10-11 Dec, and the Midwest Derecho on 15 Dec. This is done to illustrate the importance of examining model accuracy across a range of weather phenomena. Observation and forecast objects were created using the Method for Object-Based Diagnostic Evaluation (MODE). HRRR accurately depicted the spatial displacements between observation cloud (defined using BTs) and radar reflectivity objects, namely the centers of cloud objects are to the east of the radar objects for the tornado and derecho events, and generally west of the radar objects for the snow event. However, HRRR had higher (less intense) simulated BTs and higher (more intense) radar reflectivity than the observations for the tornado event. Simulated radar reflectivity is higher and BTs are lower than the observations during the middle of the snow event. Also, simulated radar reflectivity is higher and BTs are lower than the observations during the derecho event. Of the three weather events, the HRRR forecasts are most accurate for the snow event, based on the Object-based Threat Score, followed by the derecho and tornado events. The tornado event has lower accuracy because matches between paired simulated and observation objects are worse than for the snow event, with less similarity in size forecast objects and greater distance between paired object centers.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.