F. H. Oreja, N. G. Genna, Jose L. Gonzalez-Andujar, S. Wuest, Judit Barroso
{"title":"预测美国西北太平洋旱地俄罗斯蓟(Salsola tragus)出苗情况的水热模型","authors":"F. H. Oreja, N. G. Genna, Jose L. Gonzalez-Andujar, S. Wuest, Judit Barroso","doi":"10.1017/wsc.2023.67","DOIUrl":null,"url":null,"abstract":"Russian thistle (Salsola tragus L.) is among the most troublesome weeds in cropland and ruderal semiarid areas of the Pacific Northwest (PNW). Predicting S. tragus emergence timing plays a critical role in scheduling weed management measures. The objective of this research was to develop and validate a predictive model of the seedling emergence pattern of S. tragus under field conditions in the PNW to increase the efficacy of control measures targeting this species. The relationship between cumulative seedling emergence and cumulative hydrothermal time under field conditions was modeled using the Weibull function. This model is the first to use hydrothermal time units (HTT) to predict S. tragus emergence and showed a very good fit to the experimental data. According to this model, seedling emergence starts at 5 HTT and 50% and 90% emergence is completed at 56 HTT and 177 HTT, respectively. For model validation, independent field experiments were carried out. Cumulative seedling emergence was accurately predicted by the model, supporting the idea that this model is robust enough to be used as a predictive tool for S. tragus seedling emergence. Our model can serve as the basis for the development of decision support systems, helping farmers make the best decisions to control S. tragus populations in no-till fallow and spring wheat systems.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hydrothermal model to predict Russian thistle (Salsola tragus) seedling emergence in the dryland of the Pacific Northwest (USA)\",\"authors\":\"F. H. Oreja, N. G. Genna, Jose L. Gonzalez-Andujar, S. Wuest, Judit Barroso\",\"doi\":\"10.1017/wsc.2023.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Russian thistle (Salsola tragus L.) is among the most troublesome weeds in cropland and ruderal semiarid areas of the Pacific Northwest (PNW). Predicting S. tragus emergence timing plays a critical role in scheduling weed management measures. The objective of this research was to develop and validate a predictive model of the seedling emergence pattern of S. tragus under field conditions in the PNW to increase the efficacy of control measures targeting this species. The relationship between cumulative seedling emergence and cumulative hydrothermal time under field conditions was modeled using the Weibull function. This model is the first to use hydrothermal time units (HTT) to predict S. tragus emergence and showed a very good fit to the experimental data. According to this model, seedling emergence starts at 5 HTT and 50% and 90% emergence is completed at 56 HTT and 177 HTT, respectively. For model validation, independent field experiments were carried out. Cumulative seedling emergence was accurately predicted by the model, supporting the idea that this model is robust enough to be used as a predictive tool for S. tragus seedling emergence. Our model can serve as the basis for the development of decision support systems, helping farmers make the best decisions to control S. tragus populations in no-till fallow and spring wheat systems.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2023.67\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2023.67","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
A hydrothermal model to predict Russian thistle (Salsola tragus) seedling emergence in the dryland of the Pacific Northwest (USA)
Russian thistle (Salsola tragus L.) is among the most troublesome weeds in cropland and ruderal semiarid areas of the Pacific Northwest (PNW). Predicting S. tragus emergence timing plays a critical role in scheduling weed management measures. The objective of this research was to develop and validate a predictive model of the seedling emergence pattern of S. tragus under field conditions in the PNW to increase the efficacy of control measures targeting this species. The relationship between cumulative seedling emergence and cumulative hydrothermal time under field conditions was modeled using the Weibull function. This model is the first to use hydrothermal time units (HTT) to predict S. tragus emergence and showed a very good fit to the experimental data. According to this model, seedling emergence starts at 5 HTT and 50% and 90% emergence is completed at 56 HTT and 177 HTT, respectively. For model validation, independent field experiments were carried out. Cumulative seedling emergence was accurately predicted by the model, supporting the idea that this model is robust enough to be used as a predictive tool for S. tragus seedling emergence. Our model can serve as the basis for the development of decision support systems, helping farmers make the best decisions to control S. tragus populations in no-till fallow and spring wheat systems.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.