{"title":"利用组织病理学图像进行乳腺癌检测和分类的混合优化(分割和深度学习","authors":"Samla Salim, R. Sarath","doi":"10.4015/s101623722350031x","DOIUrl":null,"url":null,"abstract":"Breast cancer detection is a highly fatal disease and is normally detected considering histopathological images (HPIs). However, the complexity of the HPIs makes it challenging to detect breast cancer accurately. Further, manual detection is highly time-consuming and subjective and depends on the experience of the medical professionals. To overcome these issues, an effective deep learning (DL) method for detecting breast cancer from HPIs is proposed. Here, the proposed approach is realized using various processes, such as pre-processing, blood cell segmentation, feature extraction, and classification. Segmentation is accomplished using the SegAN, and classification is performed using the deep convolutional neural network (DCNN). Both networks are trained using the proposed invasive water Ebola optimization (IWEO) algorithm. The efficiency of breast cancer detection is improved by using various features, such as shape features, histogram of gradients (HOG) and local gradient patterns (LGP). Further, the IWEO-DCNN is inspected for its dominance by considering measures, such as accuracy, test negative rate (TNR) and test positive rate (TPR), and the experimental results show that the IWEO-DCNN attained a maximal accuracy of 0.963, TNR of 0.963 and TPR of 0.950.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYBRID OPTIMIZATION ENABLED SEGMENTATION AND DEEP LEARNING FOR BREAST CANCER DETECTION AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES\",\"authors\":\"Samla Salim, R. Sarath\",\"doi\":\"10.4015/s101623722350031x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer detection is a highly fatal disease and is normally detected considering histopathological images (HPIs). However, the complexity of the HPIs makes it challenging to detect breast cancer accurately. Further, manual detection is highly time-consuming and subjective and depends on the experience of the medical professionals. To overcome these issues, an effective deep learning (DL) method for detecting breast cancer from HPIs is proposed. Here, the proposed approach is realized using various processes, such as pre-processing, blood cell segmentation, feature extraction, and classification. Segmentation is accomplished using the SegAN, and classification is performed using the deep convolutional neural network (DCNN). Both networks are trained using the proposed invasive water Ebola optimization (IWEO) algorithm. The efficiency of breast cancer detection is improved by using various features, such as shape features, histogram of gradients (HOG) and local gradient patterns (LGP). Further, the IWEO-DCNN is inspected for its dominance by considering measures, such as accuracy, test negative rate (TNR) and test positive rate (TPR), and the experimental results show that the IWEO-DCNN attained a maximal accuracy of 0.963, TNR of 0.963 and TPR of 0.950.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s101623722350031x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s101623722350031x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
HYBRID OPTIMIZATION ENABLED SEGMENTATION AND DEEP LEARNING FOR BREAST CANCER DETECTION AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES
Breast cancer detection is a highly fatal disease and is normally detected considering histopathological images (HPIs). However, the complexity of the HPIs makes it challenging to detect breast cancer accurately. Further, manual detection is highly time-consuming and subjective and depends on the experience of the medical professionals. To overcome these issues, an effective deep learning (DL) method for detecting breast cancer from HPIs is proposed. Here, the proposed approach is realized using various processes, such as pre-processing, blood cell segmentation, feature extraction, and classification. Segmentation is accomplished using the SegAN, and classification is performed using the deep convolutional neural network (DCNN). Both networks are trained using the proposed invasive water Ebola optimization (IWEO) algorithm. The efficiency of breast cancer detection is improved by using various features, such as shape features, histogram of gradients (HOG) and local gradient patterns (LGP). Further, the IWEO-DCNN is inspected for its dominance by considering measures, such as accuracy, test negative rate (TNR) and test positive rate (TPR), and the experimental results show that the IWEO-DCNN attained a maximal accuracy of 0.963, TNR of 0.963 and TPR of 0.950.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.