{"title":"采用响应面方法优化和验证同时测定 SNEDDs 配方中胸腺醌和格列本脲的灵敏 UPLC-PDA 方法","authors":"D. Alshora, M. Ibrahim, Abdelrahman Y. Sherif","doi":"10.3390/separations10110577","DOIUrl":null,"url":null,"abstract":"The development of analytical procedures capable of simultaneous determination of two or more drugs is in crucial demand due to the availability of different formulations that are composed of different APIs. The presented study aimed to optimize and validate a simple, accurate, and sensitive UPLC analytical method for the simultaneous determination of thymoquinone (TQ) and Glibenclamide (GB) using response surface methodology, and apply this method in pharmaceutical formulations. A 32 full design of experiment was utilized to study the impacts of the independent parameters (acetonitrile ACN concentration, A; and column temperature, B) on the drugs’ analytical attributes (viz, retention time, peak area, and peak asymmetry, in addition to the resolution between TQ and GB peaks). The results revealed that the independent parameters exhibited highly significant (p < 0.05) antagonistic effects on retention times for TQ and GB peaks, in addition to the agnostic effect on GB peak symmetry (p-value = 0.001). Moreover, antagonistic impacts (p < 0.05) on the resolution between TQ and GB peaks were found for both independent factors (A and B). The statistical software suggested 46.86% of ACN (A) and 38.80 °C for column temperature (B) for optimum analytical responses. The optimized green method was discovered to be acceptable in terms of selectivity, precision, accuracy, robustness, sensitivity, and specificity. Moreover, the optimized simultaneous method was successfully able to determine the contents of TQ and GB in self-nanoemulsifying drug delivery (SNEDD) formulation, in which the results showed that GB and TQ content within the prepared formulations were 1.54 ± 0.023 and 3.62 ± 0.031 mg/gm, respectively. In conclusion, the developed assay was efficient and valid in analyzing TQ and GB simultaneously in bulk and self-nanoemulsifying drug delivery system (SNEDDs) formulations.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"52 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Validation of Sensitive UPLC-PDA Method for Simultaneous Determination of Thymoquinone and Glibenclamide in SNEDDs Formulations Using Response Surface Methodology\",\"authors\":\"D. Alshora, M. Ibrahim, Abdelrahman Y. Sherif\",\"doi\":\"10.3390/separations10110577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of analytical procedures capable of simultaneous determination of two or more drugs is in crucial demand due to the availability of different formulations that are composed of different APIs. The presented study aimed to optimize and validate a simple, accurate, and sensitive UPLC analytical method for the simultaneous determination of thymoquinone (TQ) and Glibenclamide (GB) using response surface methodology, and apply this method in pharmaceutical formulations. A 32 full design of experiment was utilized to study the impacts of the independent parameters (acetonitrile ACN concentration, A; and column temperature, B) on the drugs’ analytical attributes (viz, retention time, peak area, and peak asymmetry, in addition to the resolution between TQ and GB peaks). The results revealed that the independent parameters exhibited highly significant (p < 0.05) antagonistic effects on retention times for TQ and GB peaks, in addition to the agnostic effect on GB peak symmetry (p-value = 0.001). Moreover, antagonistic impacts (p < 0.05) on the resolution between TQ and GB peaks were found for both independent factors (A and B). The statistical software suggested 46.86% of ACN (A) and 38.80 °C for column temperature (B) for optimum analytical responses. The optimized green method was discovered to be acceptable in terms of selectivity, precision, accuracy, robustness, sensitivity, and specificity. Moreover, the optimized simultaneous method was successfully able to determine the contents of TQ and GB in self-nanoemulsifying drug delivery (SNEDD) formulation, in which the results showed that GB and TQ content within the prepared formulations were 1.54 ± 0.023 and 3.62 ± 0.031 mg/gm, respectively. In conclusion, the developed assay was efficient and valid in analyzing TQ and GB simultaneously in bulk and self-nanoemulsifying drug delivery system (SNEDDs) formulations.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10110577\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10110577","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Optimization and Validation of Sensitive UPLC-PDA Method for Simultaneous Determination of Thymoquinone and Glibenclamide in SNEDDs Formulations Using Response Surface Methodology
The development of analytical procedures capable of simultaneous determination of two or more drugs is in crucial demand due to the availability of different formulations that are composed of different APIs. The presented study aimed to optimize and validate a simple, accurate, and sensitive UPLC analytical method for the simultaneous determination of thymoquinone (TQ) and Glibenclamide (GB) using response surface methodology, and apply this method in pharmaceutical formulations. A 32 full design of experiment was utilized to study the impacts of the independent parameters (acetonitrile ACN concentration, A; and column temperature, B) on the drugs’ analytical attributes (viz, retention time, peak area, and peak asymmetry, in addition to the resolution between TQ and GB peaks). The results revealed that the independent parameters exhibited highly significant (p < 0.05) antagonistic effects on retention times for TQ and GB peaks, in addition to the agnostic effect on GB peak symmetry (p-value = 0.001). Moreover, antagonistic impacts (p < 0.05) on the resolution between TQ and GB peaks were found for both independent factors (A and B). The statistical software suggested 46.86% of ACN (A) and 38.80 °C for column temperature (B) for optimum analytical responses. The optimized green method was discovered to be acceptable in terms of selectivity, precision, accuracy, robustness, sensitivity, and specificity. Moreover, the optimized simultaneous method was successfully able to determine the contents of TQ and GB in self-nanoemulsifying drug delivery (SNEDD) formulation, in which the results showed that GB and TQ content within the prepared formulations were 1.54 ± 0.023 and 3.62 ± 0.031 mg/gm, respectively. In conclusion, the developed assay was efficient and valid in analyzing TQ and GB simultaneously in bulk and self-nanoemulsifying drug delivery system (SNEDDs) formulations.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization