Lingbo Meng, S. Y. Foong, P. Yek, Rock Keey Liew, A. Karami, Meenakshi Verma, N. Ma, Christian Sonne, John Chi-Wei Lan, S. Lam
{"title":"虾壳废物的热解回收和产品分布:从热重-傅立叶变换红外光谱法和热解-气相色谱/质谱分析中获得的启示","authors":"Lingbo Meng, S. Y. Foong, P. Yek, Rock Keey Liew, A. Karami, Meenakshi Verma, N. Ma, Christian Sonne, John Chi-Wei Lan, S. Lam","doi":"10.1177/0958305x231215317","DOIUrl":null,"url":null,"abstract":"Shrimp consumption is increasing owing to its rich nutrition and delicious taste. As a result, the generation of shrimp shell waste is also increasing, while the current disposal method such as landfilling causes pollution and produces harmful leachate to living organisms and the environment. Therefore, a proper management strategy is needed to dispose of shrimp shell waste to mitigate the adverse effects caused to the environment. This study presents an in-depth approach to reveal the properties of shrimp shell waste and explore its potential for use in various applications. The shrimp shell waste was subjected to pyrolysis–gas chromatography/mass spectrometry and thermogravimetric-Fourier transform infrared spectroscopy pyrolysis to evaluate the gas composition from pyrolysis. Thermogravimetric-Fourier transform infrared spectroscopy analysis reveals that when the optimal temperature for pyrolysis is 400 °C–600 °C, the predominant functional group of gases produced are –CH, –OH, and –NH. On the other hand, the results of pyrolysis–gas chromatography/mass spectrometry indicate that hydrocarbon (51.86%) is the main product of shrimp shell waste pyrolysis at 900 °C, which can be used in paints, paint thinners, rubber, printing inks, adhesives (glue). Although it has a calorific value of 15.113 MJ/kg, it cannot be directly burned because of its high nitrogen concentration (10.85 wt.%) which may generate harmful pollutants such as nitrogen oxides. Overall, pyrolysis is recommended as a viable method for converting shrimp shell waste into versatile products.","PeriodicalId":505265,"journal":{"name":"Energy & Environment","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis recovery and product distribution of shrimp shell waste: Insights from thermogravimetric-Fourier transform infrared spectroscopy and pyrolysis–gas chromatography/mass spectrometry characterization\",\"authors\":\"Lingbo Meng, S. Y. Foong, P. Yek, Rock Keey Liew, A. Karami, Meenakshi Verma, N. Ma, Christian Sonne, John Chi-Wei Lan, S. Lam\",\"doi\":\"10.1177/0958305x231215317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shrimp consumption is increasing owing to its rich nutrition and delicious taste. As a result, the generation of shrimp shell waste is also increasing, while the current disposal method such as landfilling causes pollution and produces harmful leachate to living organisms and the environment. Therefore, a proper management strategy is needed to dispose of shrimp shell waste to mitigate the adverse effects caused to the environment. This study presents an in-depth approach to reveal the properties of shrimp shell waste and explore its potential for use in various applications. The shrimp shell waste was subjected to pyrolysis–gas chromatography/mass spectrometry and thermogravimetric-Fourier transform infrared spectroscopy pyrolysis to evaluate the gas composition from pyrolysis. Thermogravimetric-Fourier transform infrared spectroscopy analysis reveals that when the optimal temperature for pyrolysis is 400 °C–600 °C, the predominant functional group of gases produced are –CH, –OH, and –NH. On the other hand, the results of pyrolysis–gas chromatography/mass spectrometry indicate that hydrocarbon (51.86%) is the main product of shrimp shell waste pyrolysis at 900 °C, which can be used in paints, paint thinners, rubber, printing inks, adhesives (glue). Although it has a calorific value of 15.113 MJ/kg, it cannot be directly burned because of its high nitrogen concentration (10.85 wt.%) which may generate harmful pollutants such as nitrogen oxides. Overall, pyrolysis is recommended as a viable method for converting shrimp shell waste into versatile products.\",\"PeriodicalId\":505265,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"1 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305x231215317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0958305x231215317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pyrolysis recovery and product distribution of shrimp shell waste: Insights from thermogravimetric-Fourier transform infrared spectroscopy and pyrolysis–gas chromatography/mass spectrometry characterization
Shrimp consumption is increasing owing to its rich nutrition and delicious taste. As a result, the generation of shrimp shell waste is also increasing, while the current disposal method such as landfilling causes pollution and produces harmful leachate to living organisms and the environment. Therefore, a proper management strategy is needed to dispose of shrimp shell waste to mitigate the adverse effects caused to the environment. This study presents an in-depth approach to reveal the properties of shrimp shell waste and explore its potential for use in various applications. The shrimp shell waste was subjected to pyrolysis–gas chromatography/mass spectrometry and thermogravimetric-Fourier transform infrared spectroscopy pyrolysis to evaluate the gas composition from pyrolysis. Thermogravimetric-Fourier transform infrared spectroscopy analysis reveals that when the optimal temperature for pyrolysis is 400 °C–600 °C, the predominant functional group of gases produced are –CH, –OH, and –NH. On the other hand, the results of pyrolysis–gas chromatography/mass spectrometry indicate that hydrocarbon (51.86%) is the main product of shrimp shell waste pyrolysis at 900 °C, which can be used in paints, paint thinners, rubber, printing inks, adhesives (glue). Although it has a calorific value of 15.113 MJ/kg, it cannot be directly burned because of its high nitrogen concentration (10.85 wt.%) which may generate harmful pollutants such as nitrogen oxides. Overall, pyrolysis is recommended as a viable method for converting shrimp shell waste into versatile products.