朝觐中紧急医疗服务决策的多目标设施覆盖位置问题

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
H. Naji, Mohanad Al-Behadili, Mohammad Sari Kadim
{"title":"朝觐中紧急医疗服务决策的多目标设施覆盖位置问题","authors":"H. Naji, Mohanad Al-Behadili, Mohammad Sari Kadim","doi":"10.21123/bsj.2023.8737","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective facility model of coverage location problem to determine the number, locations, and redeployments of Emergency Medical Services (EMS) system. The EMS runs with two types of ambulances, Basic Life Support (BLS) and Advance Life Support (ALS). The suggested Multi-objective Coverage Location model (MO-CL) considers a bi-objective function, which is minimizing the EMS costs and the fatigue of EMS crew members. This can be managed by reducing the number of redeployments for both types of ambulances while still providing the required coverage levels. The MO-CL model is based on the approximation hypercube model that eliminates the assumptions of autonomous ambulance operation and system-wide busy probability. It can be solved by applying a modified MO-CL search algorithm. The model and solution method have been applied for a case study based on real data collected from the Al Noor Specialist Hospital in Makkah, Saudi Arabia during the period of fifteen days of Hajj pilgrimage. The results showed that, to achieve the 95% coverage threshold of critical and non-critical demand, the MO-CL model needs at least 64 ambulances (29 ALS, 12 for BLS backups, and 23 for BLS) and 19 redeployments for every day (9 for ALS, 2 for BLS backup, and 8 for BLS).","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":"47 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Objective Facility Coverage Location Problem for Emergency Medical Service Decisions in Hajj\",\"authors\":\"H. Naji, Mohanad Al-Behadili, Mohammad Sari Kadim\",\"doi\":\"10.21123/bsj.2023.8737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-objective facility model of coverage location problem to determine the number, locations, and redeployments of Emergency Medical Services (EMS) system. The EMS runs with two types of ambulances, Basic Life Support (BLS) and Advance Life Support (ALS). The suggested Multi-objective Coverage Location model (MO-CL) considers a bi-objective function, which is minimizing the EMS costs and the fatigue of EMS crew members. This can be managed by reducing the number of redeployments for both types of ambulances while still providing the required coverage levels. The MO-CL model is based on the approximation hypercube model that eliminates the assumptions of autonomous ambulance operation and system-wide busy probability. It can be solved by applying a modified MO-CL search algorithm. The model and solution method have been applied for a case study based on real data collected from the Al Noor Specialist Hospital in Makkah, Saudi Arabia during the period of fifteen days of Hajj pilgrimage. The results showed that, to achieve the 95% coverage threshold of critical and non-critical demand, the MO-CL model needs at least 64 ambulances (29 ALS, 12 for BLS backups, and 23 for BLS) and 19 redeployments for every day (9 for ALS, 2 for BLS backup, and 8 for BLS).\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2023.8737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2023.8737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个覆盖位置问题的多目标设施模型,以确定紧急医疗服务(EMS)系统的数量、位置和重新部署。紧急医疗服务系统有两种类型的救护车,即基本生命支持(BLS)和高级生命支持(ALS)。建议的多目标覆盖位置模型(MO-CL)考虑了一个双目标函数,即最大限度地降低 EMS 成本和 EMS 人员的疲劳度。这可以通过减少两种类型救护车的重新部署次数来实现,同时还能提供所需的覆盖水平。MO-CL 模型以近似超立方体模型为基础,消除了救护车自主运行和全系统繁忙概率的假设。该模型可通过改进的 MO-CL 搜索算法求解。该模型和求解方法基于沙特阿拉伯麦加 Al Noor 专科医院在朝觐十五天期间收集的真实数据进行了案例研究。结果表明,要达到关键和非关键需求 95% 的覆盖阈值,MO-CL 模型每天至少需要 64 辆救护车(29 辆 ALS、12 辆 BLS 后备车和 23 辆 BLS)和 19 次重新部署(9 辆 ALS、2 辆 BLS 后备车和 8 辆 BLS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Objective Facility Coverage Location Problem for Emergency Medical Service Decisions in Hajj
This paper proposes a multi-objective facility model of coverage location problem to determine the number, locations, and redeployments of Emergency Medical Services (EMS) system. The EMS runs with two types of ambulances, Basic Life Support (BLS) and Advance Life Support (ALS). The suggested Multi-objective Coverage Location model (MO-CL) considers a bi-objective function, which is minimizing the EMS costs and the fatigue of EMS crew members. This can be managed by reducing the number of redeployments for both types of ambulances while still providing the required coverage levels. The MO-CL model is based on the approximation hypercube model that eliminates the assumptions of autonomous ambulance operation and system-wide busy probability. It can be solved by applying a modified MO-CL search algorithm. The model and solution method have been applied for a case study based on real data collected from the Al Noor Specialist Hospital in Makkah, Saudi Arabia during the period of fifteen days of Hajj pilgrimage. The results showed that, to achieve the 95% coverage threshold of critical and non-critical demand, the MO-CL model needs at least 64 ambulances (29 ALS, 12 for BLS backups, and 23 for BLS) and 19 redeployments for every day (9 for ALS, 2 for BLS backup, and 8 for BLS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信