{"title":"高原问题与最小曲面:数值方法与应用","authors":"Mifodijus Sapagovas","doi":"10.15388/lmr.2023.33611","DOIUrl":null,"url":null,"abstract":"This article presents an overview of the results of solving the minimal surface equation by numerical methods. Another research task is the application of minimal surfaces in science, technology, especially architecture. The article is illustrated with examples of the application of minimal surfaces.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plateau uždavinys ir minimalieji paviršiai: skaitiniai metodai ir taikymai\",\"authors\":\"Mifodijus Sapagovas\",\"doi\":\"10.15388/lmr.2023.33611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an overview of the results of solving the minimal surface equation by numerical methods. Another research task is the application of minimal surfaces in science, technology, especially architecture. The article is illustrated with examples of the application of minimal surfaces.\",\"PeriodicalId\":33611,\"journal\":{\"name\":\"Lietuvos Matematikos Rinkinys\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lietuvos Matematikos Rinkinys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/lmr.2023.33611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2023.33611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plateau uždavinys ir minimalieji paviršiai: skaitiniai metodai ir taikymai
This article presents an overview of the results of solving the minimal surface equation by numerical methods. Another research task is the application of minimal surfaces in science, technology, especially architecture. The article is illustrated with examples of the application of minimal surfaces.