评估不同饱和度下非饱和粘性土的抗剪强度特性

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY
Ahmed Salah Abood, Mohammed Y. Fattah, Aqeel Al-Adili
{"title":"评估不同饱和度下非饱和粘性土的抗剪强度特性","authors":"Ahmed Salah Abood, Mohammed Y. Fattah, Aqeel Al-Adili","doi":"10.1080/23311916.2023.2283303","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study is to determine whether or not unsaturated gypseous soil can function well as a substrate for the foundations of carrying loads. A comprehensive program of testing was carried out with the objective of validating the geotechnical parameters and behavior of the unsaturated gypseous soils. The testing program included specific gravity, moisture content, classification tests, Proctor’s compaction, relative density, and the triaxial test. Additionally, chemical analysis was performed on the samples as well. This approach was employed in a granular soil suction process to eliminate gaps of air in the soil until the soil grains held together. The sample was prepared by using a pump of vacuum with a suction process (approximately −20.0 kPa), and this method was used in the granular soil suction process. As a consequence of this, the suction prevents a specimen from collapsing when it is removed from the apparatus. The next step consisted of conducting a consolidated-undrained triaxial test on the soil. Experiments were performed on materials with a relative density of 35% and several degrees of saturation, such as normal saturation (6%), unsaturated (30, 60, 80%), and 100% saturated. It was shown that there is a reduction in the internal friction angle for the effective and total stresses is caused by an increase in the water content of the soil at any saturation degree. This occurs in both the unsaturated and saturated states of the soil. The angle of friction decreased by 80% of the natural value for both stresses, effective and total. As gypseous soil moisture increases up to the saturation degree of 60%, the soil cohesion for the total and effective stresses rises, where it increased by (220% and 125%) of the natural value for both the effective stress and the total stress, respectively, leading to an increase in the soil’s shear strength (ϕ and c). After then, there was a steady weakening of the force when it reached saturation degrees of 80% and 100%, where it decreased by (44% and 47%) of the maximum value at 60% saturation degree for both the effective stress and the total stress, respectively.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"62 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of shear strength characteristics of the unsaturated gypseous soil at various saturation degrees\",\"authors\":\"Ahmed Salah Abood, Mohammed Y. Fattah, Aqeel Al-Adili\",\"doi\":\"10.1080/23311916.2023.2283303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this study is to determine whether or not unsaturated gypseous soil can function well as a substrate for the foundations of carrying loads. A comprehensive program of testing was carried out with the objective of validating the geotechnical parameters and behavior of the unsaturated gypseous soils. The testing program included specific gravity, moisture content, classification tests, Proctor’s compaction, relative density, and the triaxial test. Additionally, chemical analysis was performed on the samples as well. This approach was employed in a granular soil suction process to eliminate gaps of air in the soil until the soil grains held together. The sample was prepared by using a pump of vacuum with a suction process (approximately −20.0 kPa), and this method was used in the granular soil suction process. As a consequence of this, the suction prevents a specimen from collapsing when it is removed from the apparatus. The next step consisted of conducting a consolidated-undrained triaxial test on the soil. Experiments were performed on materials with a relative density of 35% and several degrees of saturation, such as normal saturation (6%), unsaturated (30, 60, 80%), and 100% saturated. It was shown that there is a reduction in the internal friction angle for the effective and total stresses is caused by an increase in the water content of the soil at any saturation degree. This occurs in both the unsaturated and saturated states of the soil. The angle of friction decreased by 80% of the natural value for both stresses, effective and total. As gypseous soil moisture increases up to the saturation degree of 60%, the soil cohesion for the total and effective stresses rises, where it increased by (220% and 125%) of the natural value for both the effective stress and the total stress, respectively, leading to an increase in the soil’s shear strength (ϕ and c). After then, there was a steady weakening of the force when it reached saturation degrees of 80% and 100%, where it decreased by (44% and 47%) of the maximum value at 60% saturation degree for both the effective stress and the total stress, respectively.\",\"PeriodicalId\":10464,\"journal\":{\"name\":\"Cogent Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311916.2023.2283303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2283303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究的目的是确定非饱和粘性土能否很好地作为承载负荷的地基。为了验证非饱和吉普赛土的岩土参数和行为,进行了全面的测试。测试项目包括比重、含水量、分类测试、Proctor 压实度、相对密度和三轴测试。此外,还对样本进行了化学分析。在粒状土壤抽吸过程中采用了这种方法,以消除土壤中的空气间隙,直到土壤颗粒紧密结合在一起。样品的制备是通过真空泵的抽吸过程(约 -20.0kPa)进行的,这种方法被用于粒状土壤的抽吸过程。因此,吸力可以防止试样从仪器中取出时发生坍塌。下一步是对土壤进行固结-排水三轴试验。实验在相对密度为 35% 的材料上进行,饱和度有几种,如正常饱和(6%)、非饱和(30%、60%、80%)和 100% 饱和。结果表明,在任何饱和度下,土壤含水量的增加都会导致有效应力和总应力的内摩擦角减小。这种情况在土壤的非饱和和饱和状态下都会出现。无论是有效应力还是总应力,摩擦角都比自然值减少了 80%。当土壤水分增加到 60% 的饱和度时,总应力和有效应力的土壤内聚力上升,其中有效应力和总应力的内聚力分别增加了自然值的 220% 和 125%,从而导致土壤的抗剪强度(j 和 c)增加。之后,当饱和度达到 80% 和 100% 时,力会逐渐减弱,在 60% 饱和度时,有效应力和总应力的最大值分别下降了(44% 和 47%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of shear strength characteristics of the unsaturated gypseous soil at various saturation degrees
Abstract The purpose of this study is to determine whether or not unsaturated gypseous soil can function well as a substrate for the foundations of carrying loads. A comprehensive program of testing was carried out with the objective of validating the geotechnical parameters and behavior of the unsaturated gypseous soils. The testing program included specific gravity, moisture content, classification tests, Proctor’s compaction, relative density, and the triaxial test. Additionally, chemical analysis was performed on the samples as well. This approach was employed in a granular soil suction process to eliminate gaps of air in the soil until the soil grains held together. The sample was prepared by using a pump of vacuum with a suction process (approximately −20.0 kPa), and this method was used in the granular soil suction process. As a consequence of this, the suction prevents a specimen from collapsing when it is removed from the apparatus. The next step consisted of conducting a consolidated-undrained triaxial test on the soil. Experiments were performed on materials with a relative density of 35% and several degrees of saturation, such as normal saturation (6%), unsaturated (30, 60, 80%), and 100% saturated. It was shown that there is a reduction in the internal friction angle for the effective and total stresses is caused by an increase in the water content of the soil at any saturation degree. This occurs in both the unsaturated and saturated states of the soil. The angle of friction decreased by 80% of the natural value for both stresses, effective and total. As gypseous soil moisture increases up to the saturation degree of 60%, the soil cohesion for the total and effective stresses rises, where it increased by (220% and 125%) of the natural value for both the effective stress and the total stress, respectively, leading to an increase in the soil’s shear strength (ϕ and c). After then, there was a steady weakening of the force when it reached saturation degrees of 80% and 100%, where it decreased by (44% and 47%) of the maximum value at 60% saturation degree for both the effective stress and the total stress, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Engineering
Cogent Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
4.00
自引率
5.30%
发文量
213
审稿时长
13 weeks
期刊介绍: One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信