I. Belovas, Martynas Sabaliauskas, Paulius Mykolaitis
{"title":"关于与素数孪生相关的整数序列的计算","authors":"I. Belovas, Martynas Sabaliauskas, Paulius Mykolaitis","doi":"10.15388/lmr.2023.33586","DOIUrl":null,"url":null,"abstract":"The twin primes conjecture states that there are infinitely many twin primes. While studying this hypothesis, many important results were obtained, but the problem remains unsolved. In this work, the problem is studied from the side of experimental mathematics. Using the probabilistic Miller–Rabin primality test and parallel computing technologies, the distribution of prime pairs in the intervals (2n; 2n+1] is studied experimentally.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apie sveikųjų skaičių sekų, asocijuotų su pirminiais dvyniais, apskaičiavimą\",\"authors\":\"I. Belovas, Martynas Sabaliauskas, Paulius Mykolaitis\",\"doi\":\"10.15388/lmr.2023.33586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The twin primes conjecture states that there are infinitely many twin primes. While studying this hypothesis, many important results were obtained, but the problem remains unsolved. In this work, the problem is studied from the side of experimental mathematics. Using the probabilistic Miller–Rabin primality test and parallel computing technologies, the distribution of prime pairs in the intervals (2n; 2n+1] is studied experimentally.\",\"PeriodicalId\":33611,\"journal\":{\"name\":\"Lietuvos Matematikos Rinkinys\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lietuvos Matematikos Rinkinys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/lmr.2023.33586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2023.33586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Apie sveikųjų skaičių sekų, asocijuotų su pirminiais dvyniais, apskaičiavimą
The twin primes conjecture states that there are infinitely many twin primes. While studying this hypothesis, many important results were obtained, but the problem remains unsolved. In this work, the problem is studied from the side of experimental mathematics. Using the probabilistic Miller–Rabin primality test and parallel computing technologies, the distribution of prime pairs in the intervals (2n; 2n+1] is studied experimentally.