提高石油采收率的沙漠节水与运输:缩小差距,实现可持续石油开采

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay
{"title":"提高石油采收率的沙漠节水与运输:缩小差距,实现可持续石油开采","authors":"O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay","doi":"10.18321/ectj1522","DOIUrl":null,"url":null,"abstract":"With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"BC-30 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery\",\"authors\":\"O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay\",\"doi\":\"10.18321/ectj1522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\"BC-30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对干旱地区水资源匮乏问题的关注,创新解决方案势在必行,以满足强化采油(EOR)工艺对水日益增长的需求。本文介绍了一项关于制备用于节水和储水的超疏水砂的研究,重点关注其在 EOR 中的潜在应用。研究结果表明,沙子疏水化后的最大水接触角为 158°。通过在铺有超疏水沙的土壤中种植植物,对沙子的储水能力进行了评估。在土壤上方和下方都使用超疏水沙时,土壤保持湿润的时间超过 10 天。相反,如果不使用超疏水沙,土壤湿度只能维持 3 天。这项研究证明了超疏水砂在延长土壤湿度方面的潜力,使其成为 EOR 和干旱地区节水应用的宝贵资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery
With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信