Parker Cole, Yang Tian, Savannah Thornburgh, Mary Malloy, Lauren Roeder, Micah Maulding, Yan Huang, Z. R. Tian, Ryan Tian
{"title":"水热合成用于骨组织工程的掺锆钛酸阀金属纳米纤维","authors":"Parker Cole, Yang Tian, Savannah Thornburgh, Mary Malloy, Lauren Roeder, Micah Maulding, Yan Huang, Z. R. Tian, Ryan Tian","doi":"10.59400/nmm.v3i2.249","DOIUrl":null,"url":null,"abstract":"Investigations are underway to identify novel biomaterials to improve strategies for bone tissue engineering. Hybrid nanomaterials have emerged as a viable class of biomaterials. Here, we report a facile, economical, optimized, and well-controlled hydrothermal method for synthesizing Zr-doped potassium titanate nanofibers with high purity. Upon morphological characterization, Zr-doping did not disrupt the parent crystal structure of potassium titanate, which showed huge potential for bone tissue engineering.","PeriodicalId":502925,"journal":{"name":"Nano and Medical Materials","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering\",\"authors\":\"Parker Cole, Yang Tian, Savannah Thornburgh, Mary Malloy, Lauren Roeder, Micah Maulding, Yan Huang, Z. R. Tian, Ryan Tian\",\"doi\":\"10.59400/nmm.v3i2.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigations are underway to identify novel biomaterials to improve strategies for bone tissue engineering. Hybrid nanomaterials have emerged as a viable class of biomaterials. Here, we report a facile, economical, optimized, and well-controlled hydrothermal method for synthesizing Zr-doped potassium titanate nanofibers with high purity. Upon morphological characterization, Zr-doping did not disrupt the parent crystal structure of potassium titanate, which showed huge potential for bone tissue engineering.\",\"PeriodicalId\":502925,\"journal\":{\"name\":\"Nano and Medical Materials\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano and Medical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59400/nmm.v3i2.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano and Medical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/nmm.v3i2.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering
Investigations are underway to identify novel biomaterials to improve strategies for bone tissue engineering. Hybrid nanomaterials have emerged as a viable class of biomaterials. Here, we report a facile, economical, optimized, and well-controlled hydrothermal method for synthesizing Zr-doped potassium titanate nanofibers with high purity. Upon morphological characterization, Zr-doping did not disrupt the parent crystal structure of potassium titanate, which showed huge potential for bone tissue engineering.