{"title":"基于智能合约的物联网设备访问控制框架","authors":"Md. Rahat Hasan, Ammar Alazab, Siddhartha Barman Joy, Mohammed Nasir Uddin, Md. Ashraf Uddin, Ansam Khraisat, Iqbal Gondal, Wahida Ferdose Urmi, Md. Alamin Talukder","doi":"10.3390/computers12110240","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has recently attracted much interest from researchers due to its diverse IoT applications. However, IoT systems encounter additional security and privacy threats. Developing an efficient IoT system is challenging because of its sophisticated network topology. Effective access control is required to ensure user privacy in the Internet of Things. Traditional access control methods are inappropriate for IoT systems because most conventional access control approaches are designed for centralized systems. This paper proposes a decentralized access control framework based on smart contracts with three parts: initialization, an access control protocol, and an inspection. Smart contracts are used in the proposed framework to store access control policies safely on the blockchain. The framework also penalizes users for attempting unauthorized access to the IoT resources. The smart contract was developed using Remix and deployed on the Ropsten Ethereum testnet. We analyze the performance of the smart contract-based access policies based on the gas consumption of blockchain transactions. Further, we analyze the system’s security, usability, scalability, and interoperability performance.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Contract-Based Access Control Framework for Internet of Things Devices\",\"authors\":\"Md. Rahat Hasan, Ammar Alazab, Siddhartha Barman Joy, Mohammed Nasir Uddin, Md. Ashraf Uddin, Ansam Khraisat, Iqbal Gondal, Wahida Ferdose Urmi, Md. Alamin Talukder\",\"doi\":\"10.3390/computers12110240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) has recently attracted much interest from researchers due to its diverse IoT applications. However, IoT systems encounter additional security and privacy threats. Developing an efficient IoT system is challenging because of its sophisticated network topology. Effective access control is required to ensure user privacy in the Internet of Things. Traditional access control methods are inappropriate for IoT systems because most conventional access control approaches are designed for centralized systems. This paper proposes a decentralized access control framework based on smart contracts with three parts: initialization, an access control protocol, and an inspection. Smart contracts are used in the proposed framework to store access control policies safely on the blockchain. The framework also penalizes users for attempting unauthorized access to the IoT resources. The smart contract was developed using Remix and deployed on the Ropsten Ethereum testnet. We analyze the performance of the smart contract-based access policies based on the gas consumption of blockchain transactions. Further, we analyze the system’s security, usability, scalability, and interoperability performance.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Smart Contract-Based Access Control Framework for Internet of Things Devices
The Internet of Things (IoT) has recently attracted much interest from researchers due to its diverse IoT applications. However, IoT systems encounter additional security and privacy threats. Developing an efficient IoT system is challenging because of its sophisticated network topology. Effective access control is required to ensure user privacy in the Internet of Things. Traditional access control methods are inappropriate for IoT systems because most conventional access control approaches are designed for centralized systems. This paper proposes a decentralized access control framework based on smart contracts with three parts: initialization, an access control protocol, and an inspection. Smart contracts are used in the proposed framework to store access control policies safely on the blockchain. The framework also penalizes users for attempting unauthorized access to the IoT resources. The smart contract was developed using Remix and deployed on the Ropsten Ethereum testnet. We analyze the performance of the smart contract-based access policies based on the gas consumption of blockchain transactions. Further, we analyze the system’s security, usability, scalability, and interoperability performance.