滑坡地下水的小波多尺度分析与预测研究

Tian-long Wang, Dingmao Peng, Xu Wang, Bin Wu, Rui Luo, Zhao-wei Chu, Hong-yue Sun
{"title":"滑坡地下水的小波多尺度分析与预测研究","authors":"Tian-long Wang, Dingmao Peng, Xu Wang, Bin Wu, Rui Luo, Zhao-wei Chu, Hong-yue Sun","doi":"10.2166/hydro.2023.299","DOIUrl":null,"url":null,"abstract":"Current groundwater prediction models often exhibit low accuracy and complex parameter adjustment. To tackle these limitations, a novel prediction model, called improved Aquila optimizer bi-directional long-term and short-term memory (IAO-BiLSTM) network, is proposed. IAO-BiLSTM optimizes the hyperparameters of the BiLSTM network using an IAO algorithm. IAO incorporates three novel enhancements, including population initialization, population updating, and global best individual updating, to overcome the drawbacks of current optimization algorithms. Before making predictions, the challenge posed by the highly nonlinear and non-stationary characteristics of groundwater level signals was addressed through the application of a wavelet multi-scale analysis method. Using a landslide site in Zhejiang Province as an example, a monitoring system is established, and continuous wavelet transform, cross-wavelet transform, and wavelet coherence analysis are employed to perform multi-scale feature analysis on a 2-year dataset of rainfall and groundwater depth. The findings reveal that the groundwater depth of monitoring holes exhibits similar high energy resonating periods and phase relationships, strongly correlating with rainfall. Subsequently, IAO-BiLSTM is employed to predict groundwater depth, and its results are compared with seven popular machine learning regression models. The results demonstrate that IAO-BiLSTM achieves the highest accuracy, as evidenced by its root mean squared error of 0.25.","PeriodicalId":507813,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on wavelet multi-scale analysis and prediction of landslide groundwater\",\"authors\":\"Tian-long Wang, Dingmao Peng, Xu Wang, Bin Wu, Rui Luo, Zhao-wei Chu, Hong-yue Sun\",\"doi\":\"10.2166/hydro.2023.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current groundwater prediction models often exhibit low accuracy and complex parameter adjustment. To tackle these limitations, a novel prediction model, called improved Aquila optimizer bi-directional long-term and short-term memory (IAO-BiLSTM) network, is proposed. IAO-BiLSTM optimizes the hyperparameters of the BiLSTM network using an IAO algorithm. IAO incorporates three novel enhancements, including population initialization, population updating, and global best individual updating, to overcome the drawbacks of current optimization algorithms. Before making predictions, the challenge posed by the highly nonlinear and non-stationary characteristics of groundwater level signals was addressed through the application of a wavelet multi-scale analysis method. Using a landslide site in Zhejiang Province as an example, a monitoring system is established, and continuous wavelet transform, cross-wavelet transform, and wavelet coherence analysis are employed to perform multi-scale feature analysis on a 2-year dataset of rainfall and groundwater depth. The findings reveal that the groundwater depth of monitoring holes exhibits similar high energy resonating periods and phase relationships, strongly correlating with rainfall. Subsequently, IAO-BiLSTM is employed to predict groundwater depth, and its results are compared with seven popular machine learning regression models. The results demonstrate that IAO-BiLSTM achieves the highest accuracy, as evidenced by its root mean squared error of 0.25.\",\"PeriodicalId\":507813,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的地下水预测模型通常精度较低,参数调整复杂。为了解决这些局限性,我们提出了一种新型预测模型,即改进的 Aquila 优化器双向长短期记忆(IAO-BiLSTM)网络。IAO-BiLSTM 利用 IAO 算法优化 BiLSTM 网络的超参数。IAO 融合了三种新的增强算法,包括种群初始化、种群更新和全局最佳个体更新,以克服当前优化算法的缺点。在进行预测之前,通过应用小波多尺度分析方法,解决了地下水位信号的高度非线性和非稳态特征所带来的挑战。以浙江省的一个滑坡点为例,建立了一个监测系统,并采用连续小波变换、交叉小波变换和小波相干分析等方法对两年的降雨量和地下水深度数据集进行了多尺度特征分析。研究结果表明,监测孔的地下水深度表现出相似的高能共振周期和相位关系,与降雨量密切相关。随后,采用 IAO-BiLSTM 预测地下水深度,并将其结果与七种流行的机器学习回归模型进行比较。结果表明,IAO-BiLSTM 的精度最高,其均方根误差为 0.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on wavelet multi-scale analysis and prediction of landslide groundwater
Current groundwater prediction models often exhibit low accuracy and complex parameter adjustment. To tackle these limitations, a novel prediction model, called improved Aquila optimizer bi-directional long-term and short-term memory (IAO-BiLSTM) network, is proposed. IAO-BiLSTM optimizes the hyperparameters of the BiLSTM network using an IAO algorithm. IAO incorporates three novel enhancements, including population initialization, population updating, and global best individual updating, to overcome the drawbacks of current optimization algorithms. Before making predictions, the challenge posed by the highly nonlinear and non-stationary characteristics of groundwater level signals was addressed through the application of a wavelet multi-scale analysis method. Using a landslide site in Zhejiang Province as an example, a monitoring system is established, and continuous wavelet transform, cross-wavelet transform, and wavelet coherence analysis are employed to perform multi-scale feature analysis on a 2-year dataset of rainfall and groundwater depth. The findings reveal that the groundwater depth of monitoring holes exhibits similar high energy resonating periods and phase relationships, strongly correlating with rainfall. Subsequently, IAO-BiLSTM is employed to predict groundwater depth, and its results are compared with seven popular machine learning regression models. The results demonstrate that IAO-BiLSTM achieves the highest accuracy, as evidenced by its root mean squared error of 0.25.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信