Fernando Mejía-Ramírez, M. I. Pérez-León, A. Benavides-Mendoza, S. González-Morales, Antonio JUÁREZ-MALDONADO, América Berenice Morales-Díaz, F. Lara-Viveros, Álvaro Morelos-Moreno
{"title":"根部浸泡硒和碘对番茄(Solanum lycopersicum L.)作物抗氧化化合物的影响","authors":"Fernando Mejía-Ramírez, M. I. Pérez-León, A. Benavides-Mendoza, S. González-Morales, Antonio JUÁREZ-MALDONADO, América Berenice Morales-Díaz, F. Lara-Viveros, Álvaro Morelos-Moreno","doi":"10.15835/nbha51413247","DOIUrl":null,"url":null,"abstract":"The use of trace elements such as iodine and selenium in agriculture is gaining great importance due to the benefits in plants before different types of biotic or abiotic stress. This research aimed to evaluate the seedling root priming with Na2SeO3 (0, 0,5, 1, 2, 3 mg L-1) and KIO3 (0, 100, 150, 200, 250 mg L-1) on the antioxidant compounds of tomato (Solanum lycopersicum L.) fruits and leaves. The crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v), in a randomized complete block experimental design with a 52 factorial arrangement. In the fruits, the Na2SeO3 influenced the GHS, flavonoids, lycopene and β-carotene contents, while the KIO3 influenced the GHS, vitamin C and lycopene contents. The KIO3-Na2SeO3 interactions affected the GSH, phenols, flavonoids, lycopene and β-carotene contents in fruits. In the leaves the GHS content increased with the Na2SeO3, while the GSH, flavonoids, and chlorophyll contents increased with the KIO3 factor and KIO3-Na2SeO3 interactions. The evaluated enzymes in fruits and leaves decreased with the both the KIO3 and Na2SeO3 concentrations. The Na2SeO3 influenced the hydrophilic compounds by ABTS and DPPH, while the KIO3 influenced the hydrophilic compounds by ABTS. In the leaves, the KIO3 influenced the lipophilic compounds by ABTS. The KIO3-Na2SeO3 interactions influenced the hydrophilic compounds by ABTS in both the fruits and leaves. Seedling root imbibition in KIO3 and Na2SeO3 is a method that implemented in the tomato crop presents interesting aspects in the increase of the antioxidant capacity and the non-enzymatic compounds, such as vitamin C, phenols, flavonoids and GSH contents. However, this method presented an inhibition in the antioxidant enzymes.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":"32 9","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of root imbibition with selenium and iodine on antioxidant compounds in tomato (Solanum lycopersicum L.) crop\",\"authors\":\"Fernando Mejía-Ramírez, M. I. Pérez-León, A. Benavides-Mendoza, S. González-Morales, Antonio JUÁREZ-MALDONADO, América Berenice Morales-Díaz, F. Lara-Viveros, Álvaro Morelos-Moreno\",\"doi\":\"10.15835/nbha51413247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of trace elements such as iodine and selenium in agriculture is gaining great importance due to the benefits in plants before different types of biotic or abiotic stress. This research aimed to evaluate the seedling root priming with Na2SeO3 (0, 0,5, 1, 2, 3 mg L-1) and KIO3 (0, 100, 150, 200, 250 mg L-1) on the antioxidant compounds of tomato (Solanum lycopersicum L.) fruits and leaves. The crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v), in a randomized complete block experimental design with a 52 factorial arrangement. In the fruits, the Na2SeO3 influenced the GHS, flavonoids, lycopene and β-carotene contents, while the KIO3 influenced the GHS, vitamin C and lycopene contents. The KIO3-Na2SeO3 interactions affected the GSH, phenols, flavonoids, lycopene and β-carotene contents in fruits. In the leaves the GHS content increased with the Na2SeO3, while the GSH, flavonoids, and chlorophyll contents increased with the KIO3 factor and KIO3-Na2SeO3 interactions. The evaluated enzymes in fruits and leaves decreased with the both the KIO3 and Na2SeO3 concentrations. The Na2SeO3 influenced the hydrophilic compounds by ABTS and DPPH, while the KIO3 influenced the hydrophilic compounds by ABTS. In the leaves, the KIO3 influenced the lipophilic compounds by ABTS. The KIO3-Na2SeO3 interactions influenced the hydrophilic compounds by ABTS in both the fruits and leaves. Seedling root imbibition in KIO3 and Na2SeO3 is a method that implemented in the tomato crop presents interesting aspects in the increase of the antioxidant capacity and the non-enzymatic compounds, such as vitamin C, phenols, flavonoids and GSH contents. However, this method presented an inhibition in the antioxidant enzymes.\",\"PeriodicalId\":19364,\"journal\":{\"name\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"volume\":\"32 9\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15835/nbha51413247\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15835/nbha51413247","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effect of root imbibition with selenium and iodine on antioxidant compounds in tomato (Solanum lycopersicum L.) crop
The use of trace elements such as iodine and selenium in agriculture is gaining great importance due to the benefits in plants before different types of biotic or abiotic stress. This research aimed to evaluate the seedling root priming with Na2SeO3 (0, 0,5, 1, 2, 3 mg L-1) and KIO3 (0, 100, 150, 200, 250 mg L-1) on the antioxidant compounds of tomato (Solanum lycopersicum L.) fruits and leaves. The crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v), in a randomized complete block experimental design with a 52 factorial arrangement. In the fruits, the Na2SeO3 influenced the GHS, flavonoids, lycopene and β-carotene contents, while the KIO3 influenced the GHS, vitamin C and lycopene contents. The KIO3-Na2SeO3 interactions affected the GSH, phenols, flavonoids, lycopene and β-carotene contents in fruits. In the leaves the GHS content increased with the Na2SeO3, while the GSH, flavonoids, and chlorophyll contents increased with the KIO3 factor and KIO3-Na2SeO3 interactions. The evaluated enzymes in fruits and leaves decreased with the both the KIO3 and Na2SeO3 concentrations. The Na2SeO3 influenced the hydrophilic compounds by ABTS and DPPH, while the KIO3 influenced the hydrophilic compounds by ABTS. In the leaves, the KIO3 influenced the lipophilic compounds by ABTS. The KIO3-Na2SeO3 interactions influenced the hydrophilic compounds by ABTS in both the fruits and leaves. Seedling root imbibition in KIO3 and Na2SeO3 is a method that implemented in the tomato crop presents interesting aspects in the increase of the antioxidant capacity and the non-enzymatic compounds, such as vitamin C, phenols, flavonoids and GSH contents. However, this method presented an inhibition in the antioxidant enzymes.
期刊介绍:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.