微分夹杂的线性化

Mira Bivas, M. Krastanov, N. Ribarska
{"title":"微分夹杂的线性化","authors":"Mira Bivas, M. Krastanov, N. Ribarska","doi":"10.55630/serdica.2023.49.187-204","DOIUrl":null,"url":null,"abstract":"In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.","PeriodicalId":509503,"journal":{"name":"Serdica Mathematical Journal","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearization of differential inclusions\",\"authors\":\"Mira Bivas, M. Krastanov, N. Ribarska\",\"doi\":\"10.55630/serdica.2023.49.187-204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.\",\"PeriodicalId\":509503,\"journal\":{\"name\":\"Serdica Mathematical Journal\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serdica Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55630/serdica.2023.49.187-204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serdica Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/serdica.2023.49.187-204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将 Dubovickiĭ 和 Miljutin 的平滑控制系统动力学线性化方法扩展到非平滑环境。我们考虑了受微分包容支配的动力学,并研究了从一个固定点出发的所有可接受轨迹集合的克拉克切锥。我们的方法基于经典的菲利波夫定理和两个封闭集的重要属性 "次横向性"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearization of differential inclusions
In this paper we extend the approach of Dubovickiĭ and Miljutin for linearization of the dynamics of smooth control systems to a non-smooth setting. We consider dynamics governed by a differential inclusion and we study the Clarke tangent cone to the set of all admissible trajectories starting from a fixed point. Our approach is based on the classical Filippov’s theorem and on the important property “subtransversality” of two closed sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信