利用功能数据分析技术调查空气质量

Akvilė Vitkauskaitė, Milda Salytė
{"title":"利用功能数据分析技术调查空气质量","authors":"Akvilė Vitkauskaitė, Milda Salytė","doi":"10.15388/lmr.2023.33658","DOIUrl":null,"url":null,"abstract":"In this research paper, a comprehensive analysis of particulate matter (PM10) and nitrogen dioxide (NO2) pollution concentrations in six different Lithuanian regions is presented. The analysis employs data smoothing, principal component analysis (PCA), exploratory data analysis, hypothesis testing, and time series analysis to provide a thorough examination. Functional data analysis approaches were used to find the origins and effects of these air pollutants by revealing their data patterns. The functional data analysis techniques demonstrate their effectiveness in revealing deep links within large datasets, assisting in the control of air quality problems. This research provides valuable insights into air quality challenges in Lithuanian regions. The study, aimed at comparing air quality across different regions, indicates that there are no significant differences in PM10 and NO2 between the two groups. Notably, reliable forecasts for 2023 data are attainable for PM10 in regions such as Vilnius Old Town, Vilnius Lazdynai, Šiauliai, and Klaipėda. For NO2, successful forecasting can be applied to Vilnius Old Town, Vilnius Lazdynai, and Šiauliai.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"40 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oro kokybės tyrimas naudojant funkcinės duomenų analizės metodus\",\"authors\":\"Akvilė Vitkauskaitė, Milda Salytė\",\"doi\":\"10.15388/lmr.2023.33658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research paper, a comprehensive analysis of particulate matter (PM10) and nitrogen dioxide (NO2) pollution concentrations in six different Lithuanian regions is presented. The analysis employs data smoothing, principal component analysis (PCA), exploratory data analysis, hypothesis testing, and time series analysis to provide a thorough examination. Functional data analysis approaches were used to find the origins and effects of these air pollutants by revealing their data patterns. The functional data analysis techniques demonstrate their effectiveness in revealing deep links within large datasets, assisting in the control of air quality problems. This research provides valuable insights into air quality challenges in Lithuanian regions. The study, aimed at comparing air quality across different regions, indicates that there are no significant differences in PM10 and NO2 between the two groups. Notably, reliable forecasts for 2023 data are attainable for PM10 in regions such as Vilnius Old Town, Vilnius Lazdynai, Šiauliai, and Klaipėda. For NO2, successful forecasting can be applied to Vilnius Old Town, Vilnius Lazdynai, and Šiauliai.\",\"PeriodicalId\":33611,\"journal\":{\"name\":\"Lietuvos Matematikos Rinkinys\",\"volume\":\"40 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lietuvos Matematikos Rinkinys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/lmr.2023.33658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2023.33658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文全面分析了立陶宛六个不同地区的颗粒物(PM10)和二氧化氮(NO2)污染浓度。分析采用了数据平滑化、主成分分析 (PCA)、探索性数据分析、假设检验和时间序列分析等方法,以提供全面的研究。功能数据分析方法通过揭示这些空气污染物的数据模式,找到了它们的来源和影响。功能数据分析技术展示了其在揭示大型数据集深层联系方面的有效性,有助于控制空气质量问题。这项研究为了解立陶宛地区的空气质量挑战提供了宝贵的见解。这项旨在比较不同地区空气质量的研究表明,两组之间的 PM10 和 NO2 没有显著差异。值得注意的是,对于维尔纽斯老城、维尔纽斯拉兹迪奈、希奥利艾和克莱佩达等地区的 PM10,2023 年的数据预测是可靠的。对于二氧化氮,维尔纽斯老城、维尔纽斯拉兹迪奈和希奥利艾可以成功预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oro kokybės tyrimas naudojant funkcinės duomenų analizės metodus
In this research paper, a comprehensive analysis of particulate matter (PM10) and nitrogen dioxide (NO2) pollution concentrations in six different Lithuanian regions is presented. The analysis employs data smoothing, principal component analysis (PCA), exploratory data analysis, hypothesis testing, and time series analysis to provide a thorough examination. Functional data analysis approaches were used to find the origins and effects of these air pollutants by revealing their data patterns. The functional data analysis techniques demonstrate their effectiveness in revealing deep links within large datasets, assisting in the control of air quality problems. This research provides valuable insights into air quality challenges in Lithuanian regions. The study, aimed at comparing air quality across different regions, indicates that there are no significant differences in PM10 and NO2 between the two groups. Notably, reliable forecasts for 2023 data are attainable for PM10 in regions such as Vilnius Old Town, Vilnius Lazdynai, Šiauliai, and Klaipėda. For NO2, successful forecasting can be applied to Vilnius Old Town, Vilnius Lazdynai, and Šiauliai.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信