Mohaimenul Azam Khan Raiaan, Nur Mohammad Fahad, Shovan Chowdhury, Debopom Sutradhar, Saadman Sakib Mihad, Md. Motaharul Islam
{"title":"基于物联网的物体检测系统,保护濒危动物,加强农场安全","authors":"Mohaimenul Azam Khan Raiaan, Nur Mohammad Fahad, Shovan Chowdhury, Debopom Sutradhar, Saadman Sakib Mihad, Md. Motaharul Islam","doi":"10.3390/fi15120372","DOIUrl":null,"url":null,"abstract":"Significant threats to ecological equilibrium and sustainable agriculture are posed by the extinction of animal species and the subsequent effects on farms. Farmers face difficult decisions, such as installing electric fences to protect their farms, although these measures can harm animals essential for maintaining ecological equilibrium. To tackle these essential issues, our research introduces an innovative solution in the form of an object-detection system. In this research, we designed and implemented a system that leverages the ESP32-CAM platform in conjunction with the YOLOv8 object-detection model. Our proposed system aims to identify endangered species and harmful animals within farming environments, providing real-time alerts to farmers and endangered wildlife by integrating a cloud-based alert system. To train the YOLOv8 model effectively, we meticulously compiled diverse image datasets featuring these animals in agricultural settings, subsequently annotating them. After that, we tuned the hyperparameter of the YOLOv8 model to enhance the performance of the model. The results from our optimized YOLOv8 model are auspicious. It achieves a remarkable mean average precision (mAP) of 92.44% and an impressive sensitivity rate of 96.65% on an unseen test dataset, firmly establishing its efficacy. After achieving an optimal result, we employed the model in our IoT system and when the system detects the presence of these animals, it immediately activates an audible buzzer. Additionally, a cloud-based system was utilized to notify neighboring farmers effectively and alert animals to potential danger. This research’s significance lies in its potential to drive the conservation of endangered species while simultaneously mitigating the agricultural damage inflicted by these animals.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"40 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT-Based Object-Detection System to Safeguard Endangered Animals and Bolster Agricultural Farm Security\",\"authors\":\"Mohaimenul Azam Khan Raiaan, Nur Mohammad Fahad, Shovan Chowdhury, Debopom Sutradhar, Saadman Sakib Mihad, Md. Motaharul Islam\",\"doi\":\"10.3390/fi15120372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant threats to ecological equilibrium and sustainable agriculture are posed by the extinction of animal species and the subsequent effects on farms. Farmers face difficult decisions, such as installing electric fences to protect their farms, although these measures can harm animals essential for maintaining ecological equilibrium. To tackle these essential issues, our research introduces an innovative solution in the form of an object-detection system. In this research, we designed and implemented a system that leverages the ESP32-CAM platform in conjunction with the YOLOv8 object-detection model. Our proposed system aims to identify endangered species and harmful animals within farming environments, providing real-time alerts to farmers and endangered wildlife by integrating a cloud-based alert system. To train the YOLOv8 model effectively, we meticulously compiled diverse image datasets featuring these animals in agricultural settings, subsequently annotating them. After that, we tuned the hyperparameter of the YOLOv8 model to enhance the performance of the model. The results from our optimized YOLOv8 model are auspicious. It achieves a remarkable mean average precision (mAP) of 92.44% and an impressive sensitivity rate of 96.65% on an unseen test dataset, firmly establishing its efficacy. After achieving an optimal result, we employed the model in our IoT system and when the system detects the presence of these animals, it immediately activates an audible buzzer. Additionally, a cloud-based system was utilized to notify neighboring farmers effectively and alert animals to potential danger. This research’s significance lies in its potential to drive the conservation of endangered species while simultaneously mitigating the agricultural damage inflicted by these animals.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"40 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
IoT-Based Object-Detection System to Safeguard Endangered Animals and Bolster Agricultural Farm Security
Significant threats to ecological equilibrium and sustainable agriculture are posed by the extinction of animal species and the subsequent effects on farms. Farmers face difficult decisions, such as installing electric fences to protect their farms, although these measures can harm animals essential for maintaining ecological equilibrium. To tackle these essential issues, our research introduces an innovative solution in the form of an object-detection system. In this research, we designed and implemented a system that leverages the ESP32-CAM platform in conjunction with the YOLOv8 object-detection model. Our proposed system aims to identify endangered species and harmful animals within farming environments, providing real-time alerts to farmers and endangered wildlife by integrating a cloud-based alert system. To train the YOLOv8 model effectively, we meticulously compiled diverse image datasets featuring these animals in agricultural settings, subsequently annotating them. After that, we tuned the hyperparameter of the YOLOv8 model to enhance the performance of the model. The results from our optimized YOLOv8 model are auspicious. It achieves a remarkable mean average precision (mAP) of 92.44% and an impressive sensitivity rate of 96.65% on an unseen test dataset, firmly establishing its efficacy. After achieving an optimal result, we employed the model in our IoT system and when the system detects the presence of these animals, it immediately activates an audible buzzer. Additionally, a cloud-based system was utilized to notify neighboring farmers effectively and alert animals to potential danger. This research’s significance lies in its potential to drive the conservation of endangered species while simultaneously mitigating the agricultural damage inflicted by these animals.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.