电子节流阀系统的自适应协同控制

Q2 Engineering
A. F. Mutlak, A. Humaidi
{"title":"电子节流阀系统的自适应协同控制","authors":"A. F. Mutlak, A. Humaidi","doi":"10.1556/1848.2023.00706","DOIUrl":null,"url":null,"abstract":"This study has developed adaptive synergetic control (ASC) algorithm to control the angular position of moving plate in the electronic throttle valve (ETV) system. This control approach is inspired by synergetic control theory. The adaptive controller has addressed the problem of variation in systems parameters. The control design includes two elements: the control law and adaptive law. The adaptive law is developed based on Lyupunov stability analysis of the controlled system, and it is responsible for estimating the potential uncertainties in the system. The effectiveness of the proposed adaptive synergetic control has been verified by numerical simulation using MATLAB/Simulink. The results showed that the ASC algorithm could give good tracking performance in the presence of uncertainty perturbations. In addition, a comparison study has been made to compare the tracking performance of ASC and that based on conventional synergetic control (CSC) for the ETV system. The simulated results showed that the performance of ASC outperforms that based on CSC. Moreover, the results showed that the estimation errors between the actual and estimated uncertainties are bounded and there is no drift in the developed adaptive law of ASC.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive synergetic control for electronic throttle valve system\",\"authors\":\"A. F. Mutlak, A. Humaidi\",\"doi\":\"10.1556/1848.2023.00706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has developed adaptive synergetic control (ASC) algorithm to control the angular position of moving plate in the electronic throttle valve (ETV) system. This control approach is inspired by synergetic control theory. The adaptive controller has addressed the problem of variation in systems parameters. The control design includes two elements: the control law and adaptive law. The adaptive law is developed based on Lyupunov stability analysis of the controlled system, and it is responsible for estimating the potential uncertainties in the system. The effectiveness of the proposed adaptive synergetic control has been verified by numerical simulation using MATLAB/Simulink. The results showed that the ASC algorithm could give good tracking performance in the presence of uncertainty perturbations. In addition, a comparison study has been made to compare the tracking performance of ASC and that based on conventional synergetic control (CSC) for the ETV system. The simulated results showed that the performance of ASC outperforms that based on CSC. Moreover, the results showed that the estimation errors between the actual and estimated uncertainties are bounded and there is no drift in the developed adaptive law of ASC.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2023.00706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了自适应协同控制(ASC)算法,用于控制电子节流阀(ETV)系统中移动板的角位置。这种控制方法受到协同控制理论的启发。自适应控制器解决了系统参数变化的问题。控制设计包括两个要素:控制法则和自适应法则。自适应法则是在对受控系统进行柳普诺夫稳定性分析的基础上开发的,它负责估计系统中潜在的不确定性。通过使用 MATLAB/Simulink 进行数值模拟,验证了所提出的自适应协同控制的有效性。结果表明,在存在不确定性扰动的情况下,ASC 算法可以提供良好的跟踪性能。此外,还进行了一项对比研究,比较了 ASC 和基于传统协同控制(CSC)的 ETV 系统的跟踪性能。模拟结果表明,ASC 的性能优于基于 CSC 的性能。此外,结果表明,实际不确定性与估计不确定性之间的估计误差是有界的,而且所开发的 ASC 自适应法则不存在漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive synergetic control for electronic throttle valve system
This study has developed adaptive synergetic control (ASC) algorithm to control the angular position of moving plate in the electronic throttle valve (ETV) system. This control approach is inspired by synergetic control theory. The adaptive controller has addressed the problem of variation in systems parameters. The control design includes two elements: the control law and adaptive law. The adaptive law is developed based on Lyupunov stability analysis of the controlled system, and it is responsible for estimating the potential uncertainties in the system. The effectiveness of the proposed adaptive synergetic control has been verified by numerical simulation using MATLAB/Simulink. The results showed that the ASC algorithm could give good tracking performance in the presence of uncertainty perturbations. In addition, a comparison study has been made to compare the tracking performance of ASC and that based on conventional synergetic control (CSC) for the ETV system. The simulated results showed that the performance of ASC outperforms that based on CSC. Moreover, the results showed that the estimation errors between the actual and estimated uncertainties are bounded and there is no drift in the developed adaptive law of ASC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信