W. Ramirez, D. Bedoya, A. Urieles, C. Cesarano, M. Ortega
{"title":"新的 U$ 伯努利、U$ 欧拉和 U$ 日诺奇多项式及其矩阵","authors":"W. Ramirez, D. Bedoya, A. Urieles, C. Cesarano, M. Ortega","doi":"10.15330/cmp.15.2.449-467","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomials, their numbers, and their relationship with the Riemann zeta function. We also derive the Apostol-type generalizations to obtain some of their algebraic and differential properties. We introduce generalized $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomial Pascal-type matrix. We deduce some product formulas related to this matrix. Furthermore, we establish some explicit expressions for the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomial matrices, which involves the generalized Pascal matrix.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomials and their matrices\",\"authors\":\"W. Ramirez, D. Bedoya, A. Urieles, C. Cesarano, M. Ortega\",\"doi\":\"10.15330/cmp.15.2.449-467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomials, their numbers, and their relationship with the Riemann zeta function. We also derive the Apostol-type generalizations to obtain some of their algebraic and differential properties. We introduce generalized $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomial Pascal-type matrix. We deduce some product formulas related to this matrix. Furthermore, we establish some explicit expressions for the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomial matrices, which involves the generalized Pascal matrix.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.449-467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.449-467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
New $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomials and their matrices
In this paper, we introduce the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomials, their numbers, and their relationship with the Riemann zeta function. We also derive the Apostol-type generalizations to obtain some of their algebraic and differential properties. We introduce generalized $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomial Pascal-type matrix. We deduce some product formulas related to this matrix. Furthermore, we establish some explicit expressions for the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomial matrices, which involves the generalized Pascal matrix.