Dat Tien Nguyen, Chau Ngoc Ha, Ha Thanh Thi Hoang, Truong Nhat Nguyen, Tuyet Ngoc Huynh, Hai Thanh Nguyen
{"title":"在一维和二维数据上利用深度学习架构进行跆拳道姿势估计","authors":"Dat Tien Nguyen, Chau Ngoc Ha, Ha Thanh Thi Hoang, Truong Nhat Nguyen, Tuyet Ngoc Huynh, Hai Thanh Nguyen","doi":"10.15625/1813-9663/18043","DOIUrl":null,"url":null,"abstract":"Practicing sports is an activity that helps people maintain and improve their health, enhance memory and concentration, reduce anxiety and stress, and train teamwork and leadership ability. With the development of science and technology, artificial intelligence in sports has become increasingly popular with the public and brings many benefits. In particular, many applications help people track and evaluate athletes' achievements in competitions. This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"59 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA\",\"authors\":\"Dat Tien Nguyen, Chau Ngoc Ha, Ha Thanh Thi Hoang, Truong Nhat Nguyen, Tuyet Ngoc Huynh, Hai Thanh Nguyen\",\"doi\":\"10.15625/1813-9663/18043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practicing sports is an activity that helps people maintain and improve their health, enhance memory and concentration, reduce anxiety and stress, and train teamwork and leadership ability. With the development of science and technology, artificial intelligence in sports has become increasingly popular with the public and brings many benefits. In particular, many applications help people track and evaluate athletes' achievements in competitions. This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"59 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/18043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
Practicing sports is an activity that helps people maintain and improve their health, enhance memory and concentration, reduce anxiety and stress, and train teamwork and leadership ability. With the development of science and technology, artificial intelligence in sports has become increasingly popular with the public and brings many benefits. In particular, many applications help people track and evaluate athletes' achievements in competitions. This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.