近似分数布朗运动下具有随机利率和随机强度的双 3/2 波幅跳跃-扩散模型下的欧式期权估值

IF 0.7 Q2 MATHEMATICS
Siham Bayad, Abdelmajid El Hajaj, Khalid Hilal
{"title":"近似分数布朗运动下具有随机利率和随机强度的双 3/2 波幅跳跃-扩散模型下的欧式期权估值","authors":"Siham Bayad, Abdelmajid El Hajaj, Khalid Hilal","doi":"10.28924/2291-8639-21-2023-126","DOIUrl":null,"url":null,"abstract":"In this study, we propose a more comprehensive and realistic option pricing model based on approximative fractional Brownian motion, building upon recent advancements in this area. Specifically, we utilize the double 3/2-volatility Jump-Diffusion model, which incorporates approximative fractional Brownian motion with 3/2-volatility, stochastic interest rate, and stochastic intensity. To account for the stochastic interest rate, we employ a two-factor Vasicek model. Notably, our model accommodates negative interest rates. Consequently, we develop a multi-factor model with a stochastic interest rate structure for pricing European options and derive a closed-form pricing formula with an analytical solution by applying some algebraic calculations and Lie symmetries. In order to demonstrate the superiority of our proposed model over other classical approaches, we present numerical results that showcase the value of a European call option. This comparative analysis underscores the advantages of our model in comparison to traditional models.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valuing European Option Under Double 3/2-Volatility Jump-Diffusion Model With Stochastic Interest Rate and Stochastic Intensity Under Approximative Fractional Brownian Motion\",\"authors\":\"Siham Bayad, Abdelmajid El Hajaj, Khalid Hilal\",\"doi\":\"10.28924/2291-8639-21-2023-126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a more comprehensive and realistic option pricing model based on approximative fractional Brownian motion, building upon recent advancements in this area. Specifically, we utilize the double 3/2-volatility Jump-Diffusion model, which incorporates approximative fractional Brownian motion with 3/2-volatility, stochastic interest rate, and stochastic intensity. To account for the stochastic interest rate, we employ a two-factor Vasicek model. Notably, our model accommodates negative interest rates. Consequently, we develop a multi-factor model with a stochastic interest rate structure for pricing European options and derive a closed-form pricing formula with an analytical solution by applying some algebraic calculations and Lie symmetries. In order to demonstrate the superiority of our proposed model over other classical approaches, we present numerical results that showcase the value of a European call option. This comparative analysis underscores the advantages of our model in comparison to traditional models.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们以近似分数布朗运动为基础,在该领域最新进展的基础上,提出了一种更全面、更现实的期权定价模型。具体来说,我们采用了双 3/2 波动率跳跃-扩散模型,该模型包含了具有 3/2 波动率的近似分数布朗运动、随机利率和随机强度。为了解释随机利率,我们采用了双因子 Vasicek 模型。值得注意的是,我们的模型还考虑了负利率。因此,我们为欧式期权的定价建立了一个具有随机利率结构的多因子模型,并通过应用一些代数计算和李对称性推导出了一个具有解析解的闭式定价公式。为了证明我们提出的模型优于其他经典方法,我们给出了展示欧式看涨期权价值的数值结果。这种比较分析凸显了我们的模型与传统模型相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valuing European Option Under Double 3/2-Volatility Jump-Diffusion Model With Stochastic Interest Rate and Stochastic Intensity Under Approximative Fractional Brownian Motion
In this study, we propose a more comprehensive and realistic option pricing model based on approximative fractional Brownian motion, building upon recent advancements in this area. Specifically, we utilize the double 3/2-volatility Jump-Diffusion model, which incorporates approximative fractional Brownian motion with 3/2-volatility, stochastic interest rate, and stochastic intensity. To account for the stochastic interest rate, we employ a two-factor Vasicek model. Notably, our model accommodates negative interest rates. Consequently, we develop a multi-factor model with a stochastic interest rate structure for pricing European options and derive a closed-form pricing formula with an analytical solution by applying some algebraic calculations and Lie symmetries. In order to demonstrate the superiority of our proposed model over other classical approaches, we present numerical results that showcase the value of a European call option. This comparative analysis underscores the advantages of our model in comparison to traditional models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信