FPGA 上高度可扩展的自组织映射加速器及其性能评估

IF 0.8 Q4 ROBOTICS
Yusuke Yamagiwa, Yuki Kawahara, Kenji Kanazawa, Moritoshi Yasunaga
{"title":"FPGA 上高度可扩展的自组织映射加速器及其性能评估","authors":"Yusuke Yamagiwa,&nbsp;Yuki Kawahara,&nbsp;Kenji Kanazawa,&nbsp;Moritoshi Yasunaga","doi":"10.1007/s10015-023-00916-5","DOIUrl":null,"url":null,"abstract":"<div><p>Self-organizing Map (SOM) is one of the artificial neural networks and well applied to datamining or feature visualization of high-dimensional datasets. Recently, SOMs are actively used for market research, political decision-making, and social analysis using a huge number of live text-data. The SOM, however, needs a large number of parameters and iterative calculations like Deep Learning, so that specialized accelerators for SOM are strongly required. In this paper, we newly propose a scalable SOM accelerator based on FPGA, in which all neurons in the SOM are mapped onto an internal memory, or BRAM (Block-RAM) in FPGA to maintain high parallelism in the SOM itself. We implement the proposed SOM accelerator on an Alveo U50 (Xilinx, Ltd.) and evaluate its performance: the accelerator shows high scalability and runs 102.0 times faster than software processing with Intel Core i7, which is expected to be enough for the real-time datamining and feature visualization.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"29 1","pages":"94 - 100"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly scalable Self-organizing Map accelerator on FPGA and its performance evaluation\",\"authors\":\"Yusuke Yamagiwa,&nbsp;Yuki Kawahara,&nbsp;Kenji Kanazawa,&nbsp;Moritoshi Yasunaga\",\"doi\":\"10.1007/s10015-023-00916-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-organizing Map (SOM) is one of the artificial neural networks and well applied to datamining or feature visualization of high-dimensional datasets. Recently, SOMs are actively used for market research, political decision-making, and social analysis using a huge number of live text-data. The SOM, however, needs a large number of parameters and iterative calculations like Deep Learning, so that specialized accelerators for SOM are strongly required. In this paper, we newly propose a scalable SOM accelerator based on FPGA, in which all neurons in the SOM are mapped onto an internal memory, or BRAM (Block-RAM) in FPGA to maintain high parallelism in the SOM itself. We implement the proposed SOM accelerator on an Alveo U50 (Xilinx, Ltd.) and evaluate its performance: the accelerator shows high scalability and runs 102.0 times faster than software processing with Intel Core i7, which is expected to be enough for the real-time datamining and feature visualization.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"29 1\",\"pages\":\"94 - 100\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-023-00916-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00916-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自组织图(SOM)是人工神经网络之一,被广泛应用于高维数据集的数据挖掘或特征可视化。最近,自组织图被积极用于市场研究、政治决策和社会分析,使用了大量的实时文本数据。然而,SOM 与深度学习一样,需要大量的参数和迭代计算,因此非常需要专门的 SOM 加速器。在本文中,我们新提出了一种基于 FPGA 的可扩展 SOM 加速器,其中 SOM 中的所有神经元都映射到 FPGA 中的内部存储器或 BRAM(Block-RAM)上,以保持 SOM 本身的高并行性。我们在 Alveo U50(赛灵思公司)上实现了所提出的 SOM 加速器,并对其性能进行了评估:该加速器显示出很高的可扩展性,其运行速度是英特尔酷睿 i7 软件处理速度的 102.0 倍,预计足以满足实时数据挖掘和特征可视化的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A highly scalable Self-organizing Map accelerator on FPGA and its performance evaluation

A highly scalable Self-organizing Map accelerator on FPGA and its performance evaluation

Self-organizing Map (SOM) is one of the artificial neural networks and well applied to datamining or feature visualization of high-dimensional datasets. Recently, SOMs are actively used for market research, political decision-making, and social analysis using a huge number of live text-data. The SOM, however, needs a large number of parameters and iterative calculations like Deep Learning, so that specialized accelerators for SOM are strongly required. In this paper, we newly propose a scalable SOM accelerator based on FPGA, in which all neurons in the SOM are mapped onto an internal memory, or BRAM (Block-RAM) in FPGA to maintain high parallelism in the SOM itself. We implement the proposed SOM accelerator on an Alveo U50 (Xilinx, Ltd.) and evaluate its performance: the accelerator shows high scalability and runs 102.0 times faster than software processing with Intel Core i7, which is expected to be enough for the real-time datamining and feature visualization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信