基于注意力机制和长短期记忆网络的质子通量预测方法

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Zhiqian Zhang, Lei Liu, Lin Quan, Guohong Shen, Rui Zhang, Yuqi Jiang, Yuxiong Xue, Xianghua Zeng
{"title":"基于注意力机制和长短期记忆网络的质子通量预测方法","authors":"Zhiqian Zhang, Lei Liu, Lin Quan, Guohong Shen, Rui Zhang, Yuqi Jiang, Yuxiong Xue, Xianghua Zeng","doi":"10.3390/aerospace10120982","DOIUrl":null,"url":null,"abstract":"Accurately predicting proton flux in the space radiation environment is crucial for satellite in-orbit management and space science research. This paper proposes a proton flux prediction method based on a hybrid neural network. This method is a predictive approach for measuring proton flux profiles via a satellite during its operation, including crossings through the SAA region. In the data preprocessing stage, a moving average wavelet transform was employed to retain the trend information of the original data and perform noise reduction. For the model design, the TPA-LSTM model was introduced, which combines the Temporal Pattern Attention mechanism with a Long Short-Term Memory network (LSTM). The model was trained and validated using 4,174,202 proton flux data points over a span of 12 months. The experimental results indicate that the prediction accuracy of the TPA-LSTM model is higher than that of the AP-8 model, with a logarithmic root mean square error (logRMSE) of 3.71 between predicted and actual values. In particular, an improved accuracy was observed when predicting values within the South Atlantic Anomaly (SAA) region, with a logRMSE of 3.09.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"117 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proton Flux Prediction Method Based on an Attention Mechanism and Long Short-Term Memory Network\",\"authors\":\"Zhiqian Zhang, Lei Liu, Lin Quan, Guohong Shen, Rui Zhang, Yuqi Jiang, Yuxiong Xue, Xianghua Zeng\",\"doi\":\"10.3390/aerospace10120982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting proton flux in the space radiation environment is crucial for satellite in-orbit management and space science research. This paper proposes a proton flux prediction method based on a hybrid neural network. This method is a predictive approach for measuring proton flux profiles via a satellite during its operation, including crossings through the SAA region. In the data preprocessing stage, a moving average wavelet transform was employed to retain the trend information of the original data and perform noise reduction. For the model design, the TPA-LSTM model was introduced, which combines the Temporal Pattern Attention mechanism with a Long Short-Term Memory network (LSTM). The model was trained and validated using 4,174,202 proton flux data points over a span of 12 months. The experimental results indicate that the prediction accuracy of the TPA-LSTM model is higher than that of the AP-8 model, with a logarithmic root mean square error (logRMSE) of 3.71 between predicted and actual values. In particular, an improved accuracy was observed when predicting values within the South Atlantic Anomaly (SAA) region, with a logRMSE of 3.09.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"117 \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10120982\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10120982","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

准确预测空间辐射环境中的质子通量对于卫星在轨管理和空间科学研究至关重要。本文提出了一种基于混合神经网络的质子通量预测方法。该方法是一种预测方法,用于测量卫星运行期间(包括穿越 SAA 区域)的质子通量剖面。在数据预处理阶段,采用移动平均小波变换保留原始数据的趋势信息并进行降噪。在模型设计方面,引入了 TPA-LSTM 模型,该模型结合了时态模式注意机制和长短期记忆网络(LSTM)。利用 12 个月内的 4,174,202 个质子通量数据点对模型进行了训练和验证。实验结果表明,TPA-LSTM 模型的预测精度高于 AP-8 模型,预测值与实际值之间的对数均方根误差(logRMSE)为 3.71。特别是在预测南大西洋异常(SAA)区域内的数值时,精度有所提高,对数均方根误差为 3.09。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proton Flux Prediction Method Based on an Attention Mechanism and Long Short-Term Memory Network
Accurately predicting proton flux in the space radiation environment is crucial for satellite in-orbit management and space science research. This paper proposes a proton flux prediction method based on a hybrid neural network. This method is a predictive approach for measuring proton flux profiles via a satellite during its operation, including crossings through the SAA region. In the data preprocessing stage, a moving average wavelet transform was employed to retain the trend information of the original data and perform noise reduction. For the model design, the TPA-LSTM model was introduced, which combines the Temporal Pattern Attention mechanism with a Long Short-Term Memory network (LSTM). The model was trained and validated using 4,174,202 proton flux data points over a span of 12 months. The experimental results indicate that the prediction accuracy of the TPA-LSTM model is higher than that of the AP-8 model, with a logarithmic root mean square error (logRMSE) of 3.71 between predicted and actual values. In particular, an improved accuracy was observed when predicting values within the South Atlantic Anomaly (SAA) region, with a logRMSE of 3.09.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信