H. Titley, H. Cloke, E. Stephens, F. Pappenberger, E. Zsoter
{"title":"利用集合分析热带气旋洪水预报链中的可预测性环节","authors":"H. Titley, H. Cloke, E. Stephens, F. Pappenberger, E. Zsoter","doi":"10.1175/jhm-d-23-0022.1","DOIUrl":null,"url":null,"abstract":"Fluvial flooding is a major cause of death and damages from tropical cyclones (TCs), so it is important to understand the predictability of river flooding in TC cases, and the potential of global ensemble flood forecast systems to inform warning and preparedness activities. This paper demonstrates a methodology using ensemble forecasts to follow predictability and uncertainty through the forecast chain in the Global Flood Awareness System (GloFAS), to explore the connections between the skill of the TC track, intensity, precipitation and river discharge forecasts. Using the case of Hurricane Iota, which brought severe flooding to Central America in November 2020, we assess the performance of each ensemble member at each stage of the forecast, along with the overall spread and change between forecast runs, and analyse the connections between each forecast component. Strong relationships are found between track, precipitation and river discharge skill. Changes in TC intensity skill only result in significant improvements in discharge skill in river catchments close to the landfall location that are impacted by the heavy rains around the eye wall. The rainfall from the wider storm circulation is crucial to flood impacts in most of the affected river basins, with a stronger relationship with the post-landfall track error rather than the precise landfall location. We recommend the wider application of this technique in TC cases, to investigate how this cascade of predictability varies with different forecast and geographical contexts, to help inform flood early warning in TCs.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using ensembles to analyse predictability links in the tropical cyclone flood forecast chain\",\"authors\":\"H. Titley, H. Cloke, E. Stephens, F. Pappenberger, E. Zsoter\",\"doi\":\"10.1175/jhm-d-23-0022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluvial flooding is a major cause of death and damages from tropical cyclones (TCs), so it is important to understand the predictability of river flooding in TC cases, and the potential of global ensemble flood forecast systems to inform warning and preparedness activities. This paper demonstrates a methodology using ensemble forecasts to follow predictability and uncertainty through the forecast chain in the Global Flood Awareness System (GloFAS), to explore the connections between the skill of the TC track, intensity, precipitation and river discharge forecasts. Using the case of Hurricane Iota, which brought severe flooding to Central America in November 2020, we assess the performance of each ensemble member at each stage of the forecast, along with the overall spread and change between forecast runs, and analyse the connections between each forecast component. Strong relationships are found between track, precipitation and river discharge skill. Changes in TC intensity skill only result in significant improvements in discharge skill in river catchments close to the landfall location that are impacted by the heavy rains around the eye wall. The rainfall from the wider storm circulation is crucial to flood impacts in most of the affected river basins, with a stronger relationship with the post-landfall track error rather than the precise landfall location. We recommend the wider application of this technique in TC cases, to investigate how this cascade of predictability varies with different forecast and geographical contexts, to help inform flood early warning in TCs.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0022.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0022.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Using ensembles to analyse predictability links in the tropical cyclone flood forecast chain
Fluvial flooding is a major cause of death and damages from tropical cyclones (TCs), so it is important to understand the predictability of river flooding in TC cases, and the potential of global ensemble flood forecast systems to inform warning and preparedness activities. This paper demonstrates a methodology using ensemble forecasts to follow predictability and uncertainty through the forecast chain in the Global Flood Awareness System (GloFAS), to explore the connections between the skill of the TC track, intensity, precipitation and river discharge forecasts. Using the case of Hurricane Iota, which brought severe flooding to Central America in November 2020, we assess the performance of each ensemble member at each stage of the forecast, along with the overall spread and change between forecast runs, and analyse the connections between each forecast component. Strong relationships are found between track, precipitation and river discharge skill. Changes in TC intensity skill only result in significant improvements in discharge skill in river catchments close to the landfall location that are impacted by the heavy rains around the eye wall. The rainfall from the wider storm circulation is crucial to flood impacts in most of the affected river basins, with a stronger relationship with the post-landfall track error rather than the precise landfall location. We recommend the wider application of this technique in TC cases, to investigate how this cascade of predictability varies with different forecast and geographical contexts, to help inform flood early warning in TCs.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.