利用多通道深度神经网络检测假新闻

Meenakshi A. Thalor, Mayuri Garad
{"title":"利用多通道深度神经网络检测假新闻","authors":"Meenakshi A. Thalor, Mayuri Garad","doi":"10.59890/ijist.v1i5.684","DOIUrl":null,"url":null,"abstract":"Fake news has become a pervasive issue                                     in today's digital age, posing significant challenges to information integrity and trustworthiness. In this study, we propose a novel approach for the detection of fake news using MultiChannel Deep Neural Networks (MC-DNNs). Our research aims to address the limitations of traditional fake news detection methods by leveraging the power of deep learning and multiple data sources.","PeriodicalId":503863,"journal":{"name":"International Journal of Integrated Science and Technology","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake News Detection Using MultiChannel Deep Neural Networks\",\"authors\":\"Meenakshi A. Thalor, Mayuri Garad\",\"doi\":\"10.59890/ijist.v1i5.684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news has become a pervasive issue                                     in today's digital age, posing significant challenges to information integrity and trustworthiness. In this study, we propose a novel approach for the detection of fake news using MultiChannel Deep Neural Networks (MC-DNNs). Our research aims to address the limitations of traditional fake news detection methods by leveraging the power of deep learning and multiple data sources.\",\"PeriodicalId\":503863,\"journal\":{\"name\":\"International Journal of Integrated Science and Technology\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59890/ijist.v1i5.684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijist.v1i5.684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假新闻已成为当今数字时代的一个普遍问题,给信息的完整性和可信度带来了巨大挑战。在本研究中,我们提出了一种利用多通道深度神经网络(MC-DNN)检测假新闻的新方法。我们的研究旨在利用深度学习和多数据源的力量,解决传统假新闻检测方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fake News Detection Using MultiChannel Deep Neural Networks
Fake news has become a pervasive issue                                     in today's digital age, posing significant challenges to information integrity and trustworthiness. In this study, we propose a novel approach for the detection of fake news using MultiChannel Deep Neural Networks (MC-DNNs). Our research aims to address the limitations of traditional fake news detection methods by leveraging the power of deep learning and multiple data sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信