{"title":"用于人脸超分辨率的解码器结构引导的 CNN 变换器网络","authors":"Rui Dou, Jiawen Li, Xujie Wan, Heyou Chang, Hao Zheng, Guangwei Gao","doi":"10.1049/cvi2.12251","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in deep convolutional neural networks have shown improved performance in face super-resolution through joint training with other tasks such as face analysis and landmark prediction. However, these methods have certain limitations. One major limitation is the requirement for manual marking information on the dataset for multi-task joint learning. This additional marking process increases the computational cost of the network model. Additionally, since prior information is often estimated from low-quality faces, the obtained guidance information tends to be inaccurate. To address these challenges, a novel Decoder Structure Guided CNN-Transformer Network (DCTNet) is introduced, which utilises the newly proposed Global-Local Feature Extraction Unit (GLFEU) for effective embedding. Specifically, the proposed GLFEU is composed of an attention branch and a Transformer branch, to simultaneously restore global facial structure and local texture details. Additionally, a Multi-Stage Feature Fusion Module is incorporated to fuse features from different network stages, further improving the quality of the restored face images. Compared with previous methods, DCTNet improves Peak Signal-to-Noise Ratio by 0.23 and 0.19 dB on the CelebA and Helen datasets, respectively. Experimental results demonstrate that the designed DCTNet offers a simple yet powerful solution to recover detailed facial structures from low-quality images.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"473-484"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12251","citationCount":"0","resultStr":"{\"title\":\"A Decoder Structure Guided CNN-Transformer Network for face super-resolution\",\"authors\":\"Rui Dou, Jiawen Li, Xujie Wan, Heyou Chang, Hao Zheng, Guangwei Gao\",\"doi\":\"10.1049/cvi2.12251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in deep convolutional neural networks have shown improved performance in face super-resolution through joint training with other tasks such as face analysis and landmark prediction. However, these methods have certain limitations. One major limitation is the requirement for manual marking information on the dataset for multi-task joint learning. This additional marking process increases the computational cost of the network model. Additionally, since prior information is often estimated from low-quality faces, the obtained guidance information tends to be inaccurate. To address these challenges, a novel Decoder Structure Guided CNN-Transformer Network (DCTNet) is introduced, which utilises the newly proposed Global-Local Feature Extraction Unit (GLFEU) for effective embedding. Specifically, the proposed GLFEU is composed of an attention branch and a Transformer branch, to simultaneously restore global facial structure and local texture details. Additionally, a Multi-Stage Feature Fusion Module is incorporated to fuse features from different network stages, further improving the quality of the restored face images. Compared with previous methods, DCTNet improves Peak Signal-to-Noise Ratio by 0.23 and 0.19 dB on the CelebA and Helen datasets, respectively. Experimental results demonstrate that the designed DCTNet offers a simple yet powerful solution to recover detailed facial structures from low-quality images.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 4\",\"pages\":\"473-484\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12251\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12251\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12251","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Decoder Structure Guided CNN-Transformer Network for face super-resolution
Recent advances in deep convolutional neural networks have shown improved performance in face super-resolution through joint training with other tasks such as face analysis and landmark prediction. However, these methods have certain limitations. One major limitation is the requirement for manual marking information on the dataset for multi-task joint learning. This additional marking process increases the computational cost of the network model. Additionally, since prior information is often estimated from low-quality faces, the obtained guidance information tends to be inaccurate. To address these challenges, a novel Decoder Structure Guided CNN-Transformer Network (DCTNet) is introduced, which utilises the newly proposed Global-Local Feature Extraction Unit (GLFEU) for effective embedding. Specifically, the proposed GLFEU is composed of an attention branch and a Transformer branch, to simultaneously restore global facial structure and local texture details. Additionally, a Multi-Stage Feature Fusion Module is incorporated to fuse features from different network stages, further improving the quality of the restored face images. Compared with previous methods, DCTNet improves Peak Signal-to-Noise Ratio by 0.23 and 0.19 dB on the CelebA and Helen datasets, respectively. Experimental results demonstrate that the designed DCTNet offers a simple yet powerful solution to recover detailed facial structures from low-quality images.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf