应用 Rabin-Karp 方法测量两份网络文档的词语相似性

Penerapan Metode, Rabin-Karp untuk, Mengukur Kemiripan, Kata Dua, Dokumen Berbasis, Web Ramadhana Saputra, A. Cahyono, M. Abu, Amar Al Badawi
{"title":"应用 Rabin-Karp 方法测量两份网络文档的词语相似性","authors":"Penerapan Metode, Rabin-Karp untuk, Mengukur Kemiripan, Kata Dua, Dokumen Berbasis, Web Ramadhana Saputra, A. Cahyono, M. Abu, Amar Al Badawi","doi":"10.30989/teknomatika.v14i1.1128","DOIUrl":null,"url":null,"abstract":"Scientific literature plays a significant role in the academic requirements of colleges, encompassing various types such as papers, reports, journals, and scripts. However, the issue of plagiarism, including the copying and plagiarizing of others' work, remains prevalent in the creation of scientific papers. In particular, digital content plagiarism often involves copy-pasting and quoting from original documents. To address this, measuring the similarity of words between documents becomes essential. In Dhamayanti's research, the recommendation is to enhance the Rabin-Karp algorithm by utilizing a distinct method [1]. This study builds upon previous research employing a string-matching method. Instead of the conventional cosine method, the substitution method employed string-Karp techniques within the Rabin-Karp algorithm, resulting in improved similarity percentages. The manufacturing of the application adopts the string-matching method using the Rabin-Karp algorithm. The algorithm matches 5-gram word sequences converted into hash values, and the similarity percentage is determined based on matching hash values. The presence of identical words indicates similarity. The application is tested using six scientific writing documents from diverse sources with related titles. Through 15 test runs, the accuracy level reached 90%.","PeriodicalId":508475,"journal":{"name":"Teknomatika: Jurnal Informatika dan Komputer","volume":"46 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Metode Rabin-Karp untuk Mengukur Kemiripan Kata Dua Dokumen Berbasis Web\",\"authors\":\"Penerapan Metode, Rabin-Karp untuk, Mengukur Kemiripan, Kata Dua, Dokumen Berbasis, Web Ramadhana Saputra, A. Cahyono, M. Abu, Amar Al Badawi\",\"doi\":\"10.30989/teknomatika.v14i1.1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific literature plays a significant role in the academic requirements of colleges, encompassing various types such as papers, reports, journals, and scripts. However, the issue of plagiarism, including the copying and plagiarizing of others' work, remains prevalent in the creation of scientific papers. In particular, digital content plagiarism often involves copy-pasting and quoting from original documents. To address this, measuring the similarity of words between documents becomes essential. In Dhamayanti's research, the recommendation is to enhance the Rabin-Karp algorithm by utilizing a distinct method [1]. This study builds upon previous research employing a string-matching method. Instead of the conventional cosine method, the substitution method employed string-Karp techniques within the Rabin-Karp algorithm, resulting in improved similarity percentages. The manufacturing of the application adopts the string-matching method using the Rabin-Karp algorithm. The algorithm matches 5-gram word sequences converted into hash values, and the similarity percentage is determined based on matching hash values. The presence of identical words indicates similarity. The application is tested using six scientific writing documents from diverse sources with related titles. Through 15 test runs, the accuracy level reached 90%.\",\"PeriodicalId\":508475,\"journal\":{\"name\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"volume\":\"46 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknomatika: Jurnal Informatika dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30989/teknomatika.v14i1.1128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknomatika: Jurnal Informatika dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30989/teknomatika.v14i1.1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学文献在高校的学术要求中发挥着重要作用,包括论文、报告、期刊和脚本等各种类型。然而,剽窃(包括复制和剽窃他人作品)问题在科学论文创作中依然普遍存在。特别是,数字内容抄袭往往涉及复制粘贴和引用原始文件。要解决这个问题,测量文档之间的词语相似度就变得至关重要。在 Dhamayanti 的研究中,建议使用一种独特的方法来增强 Rabin-Karp 算法[1]。本研究在之前研究的基础上采用了字符串匹配法。该替代方法在 Rabin-Karp 算法中使用了字符串-Karp 技术,而不是传统的余弦法,从而提高了相似度百分比。应用程序的制造采用了使用 Rabin-Karp 算法的字符串匹配方法。该算法匹配转换成哈希值的 5 格令单词序列,并根据匹配的哈希值确定相似度百分比。出现相同的单词表示相似性。应用测试使用了六篇来自不同来源、标题相关的科学写作文档。通过 15 次测试,准确率达到 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penerapan Metode Rabin-Karp untuk Mengukur Kemiripan Kata Dua Dokumen Berbasis Web
Scientific literature plays a significant role in the academic requirements of colleges, encompassing various types such as papers, reports, journals, and scripts. However, the issue of plagiarism, including the copying and plagiarizing of others' work, remains prevalent in the creation of scientific papers. In particular, digital content plagiarism often involves copy-pasting and quoting from original documents. To address this, measuring the similarity of words between documents becomes essential. In Dhamayanti's research, the recommendation is to enhance the Rabin-Karp algorithm by utilizing a distinct method [1]. This study builds upon previous research employing a string-matching method. Instead of the conventional cosine method, the substitution method employed string-Karp techniques within the Rabin-Karp algorithm, resulting in improved similarity percentages. The manufacturing of the application adopts the string-matching method using the Rabin-Karp algorithm. The algorithm matches 5-gram word sequences converted into hash values, and the similarity percentage is determined based on matching hash values. The presence of identical words indicates similarity. The application is tested using six scientific writing documents from diverse sources with related titles. Through 15 test runs, the accuracy level reached 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信