Ab initio 人工智能:材料基因组计划的未来研究

He Li, Yong Xu, Wenhui Duan
{"title":"Ab initio 人工智能:材料基因组计划的未来研究","authors":"He Li, Yong Xu, Wenhui Duan","doi":"10.1002/mgea.16","DOIUrl":null,"url":null,"abstract":"The marriage of artificial intelligence (AI) and Materials Genome Initiative (MGI) could profoundly change the landscape of modern materials research, leading to a new paradigm of data‐driven and AI‐driven materials discovery. In this perspective, we will give an overview on the central role of AI in the MGI research. In particular, an emerging research field of ab initio AI, which applies state‐of‐the‐art AI techniques to help solve bottleneck problems of ab initio computation, will be introduced. The development of ab initio AI will greatly accelerate high‐throughput computation, promote the construction of large materials database, and open new opportunities for future research of MGI.","PeriodicalId":506967,"journal":{"name":"Materials Genome Engineering Advances","volume":"332 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio artificial intelligence: Future research of Materials Genome Initiative\",\"authors\":\"He Li, Yong Xu, Wenhui Duan\",\"doi\":\"10.1002/mgea.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The marriage of artificial intelligence (AI) and Materials Genome Initiative (MGI) could profoundly change the landscape of modern materials research, leading to a new paradigm of data‐driven and AI‐driven materials discovery. In this perspective, we will give an overview on the central role of AI in the MGI research. In particular, an emerging research field of ab initio AI, which applies state‐of‐the‐art AI techniques to help solve bottleneck problems of ab initio computation, will be introduced. The development of ab initio AI will greatly accelerate high‐throughput computation, promote the construction of large materials database, and open new opportunities for future research of MGI.\",\"PeriodicalId\":506967,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"332 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mgea.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mgea.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)与 "材料基因组计划"(MGI)的结合可能会深刻改变现代材料研究的面貌,带来数据驱动和人工智能驱动的材料发现新模式。在本视角中,我们将概述人工智能在 MGI 研究中的核心作用。特别是,我们将介绍一个新兴的研究领域--原子序数人工智能(ab initio AI),它应用最先进的人工智能技术来帮助解决原子序数计算的瓶颈问题。ab initio AI 的发展将大大加速高通量计算,促进大型材料数据库的建设,并为未来的 MGI 研究带来新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab initio artificial intelligence: Future research of Materials Genome Initiative
The marriage of artificial intelligence (AI) and Materials Genome Initiative (MGI) could profoundly change the landscape of modern materials research, leading to a new paradigm of data‐driven and AI‐driven materials discovery. In this perspective, we will give an overview on the central role of AI in the MGI research. In particular, an emerging research field of ab initio AI, which applies state‐of‐the‐art AI techniques to help solve bottleneck problems of ab initio computation, will be introduced. The development of ab initio AI will greatly accelerate high‐throughput computation, promote the construction of large materials database, and open new opportunities for future research of MGI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信