量化印度城市灰色基础设施周围的热量变化

IF 2.6 Q2 WATER RESOURCES
Divya Subramanian
{"title":"量化印度城市灰色基础设施周围的热量变化","authors":"Divya Subramanian","doi":"10.3389/frwa.2023.1091871","DOIUrl":null,"url":null,"abstract":"Dense cities in developing nations face rapid urban sprawl. This alters the local ecology and contributes significantly to the local temperature variation. Gray infrastructure (GI) includes vital processes of sewage treatment and wastewater pumping stations. GI is attributed to large greenhouse gas emissions and high energy utilization, contributing to the local urban heat island effect. A knowledge gap exists in assessing GI contribution to the local temperature variation in megacities of developing nations like India.In this study, the Thermal Variance Index (TVI) was derived around a buffer zone for 7 Sewage Treatment Plants (STPs) in Mumbai. Landsat 8 remote sensing imagery was used with summer and winter variation for alternate years from 2014 to 2021.Three STPs set within densely built surroundings showed a cooling profile. Four STPs located among wetlands displayed a heating profile. The surrounding built spaces showed significant influence on the TVI recorded. The STP Cooling Effect (CE) was further quantified by deducing its Cooling Range (CR) and Cooling Intensity (CI). STPs within densely built areas showed higher Cooling Range and Cooling Intensity. Regression analysis models indicated a high positive correlation for the Normalized Difference Built-up Index (NDBI), Landscape Shape Index (LSI), and STP capacity. Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and STP area showed a strong negative correlation.","PeriodicalId":33801,"journal":{"name":"Frontiers in Water","volume":"52 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying thermal variation around gray infrastructure in urban India\",\"authors\":\"Divya Subramanian\",\"doi\":\"10.3389/frwa.2023.1091871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense cities in developing nations face rapid urban sprawl. This alters the local ecology and contributes significantly to the local temperature variation. Gray infrastructure (GI) includes vital processes of sewage treatment and wastewater pumping stations. GI is attributed to large greenhouse gas emissions and high energy utilization, contributing to the local urban heat island effect. A knowledge gap exists in assessing GI contribution to the local temperature variation in megacities of developing nations like India.In this study, the Thermal Variance Index (TVI) was derived around a buffer zone for 7 Sewage Treatment Plants (STPs) in Mumbai. Landsat 8 remote sensing imagery was used with summer and winter variation for alternate years from 2014 to 2021.Three STPs set within densely built surroundings showed a cooling profile. Four STPs located among wetlands displayed a heating profile. The surrounding built spaces showed significant influence on the TVI recorded. The STP Cooling Effect (CE) was further quantified by deducing its Cooling Range (CR) and Cooling Intensity (CI). STPs within densely built areas showed higher Cooling Range and Cooling Intensity. Regression analysis models indicated a high positive correlation for the Normalized Difference Built-up Index (NDBI), Landscape Shape Index (LSI), and STP capacity. Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and STP area showed a strong negative correlation.\",\"PeriodicalId\":33801,\"journal\":{\"name\":\"Frontiers in Water\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frwa.2023.1091871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frwa.2023.1091871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

发展中国家的密集城市面临着快速的城市扩张。这改变了当地的生态环境,极大地加剧了当地的温度变化。灰色基础设施(GI)包括污水处理和废水泵站等重要流程。灰色基础设施排放大量温室气体,能源利用率高,加剧了当地的城市热岛效应。在这项研究中,对孟买 7 个污水处理厂(STPs)缓冲区周围的热变异指数(TVI)进行了推导。三座污水处理厂位于建筑密集的环境中,呈现出降温特征。位于湿地中的 4 个 STP 显示出升温曲线。周围的建筑空间对所记录的 TVI 有显著影响。通过推断冷却范围(CR)和冷却强度(CI),进一步量化了 STP 的冷却效应(CE)。建筑密集区域内的 STP 显示出较高的冷却范围和冷却强度。回归分析模型表明,归一化差异建筑指数(NDBI)、景观形状指数(LSI)与短期污染点的容量呈高度正相关。归一化差异植被指数 (NDVI)、修正归一化差异水指数 (MNDWI) 和 STP 面积显示出很强的负相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying thermal variation around gray infrastructure in urban India
Dense cities in developing nations face rapid urban sprawl. This alters the local ecology and contributes significantly to the local temperature variation. Gray infrastructure (GI) includes vital processes of sewage treatment and wastewater pumping stations. GI is attributed to large greenhouse gas emissions and high energy utilization, contributing to the local urban heat island effect. A knowledge gap exists in assessing GI contribution to the local temperature variation in megacities of developing nations like India.In this study, the Thermal Variance Index (TVI) was derived around a buffer zone for 7 Sewage Treatment Plants (STPs) in Mumbai. Landsat 8 remote sensing imagery was used with summer and winter variation for alternate years from 2014 to 2021.Three STPs set within densely built surroundings showed a cooling profile. Four STPs located among wetlands displayed a heating profile. The surrounding built spaces showed significant influence on the TVI recorded. The STP Cooling Effect (CE) was further quantified by deducing its Cooling Range (CR) and Cooling Intensity (CI). STPs within densely built areas showed higher Cooling Range and Cooling Intensity. Regression analysis models indicated a high positive correlation for the Normalized Difference Built-up Index (NDBI), Landscape Shape Index (LSI), and STP capacity. Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and STP area showed a strong negative correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Water
Frontiers in Water WATER RESOURCES-
CiteScore
4.00
自引率
6.90%
发文量
224
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信