{"title":"DSLR-:用于防御面向数据编程的低开销数据结构布局随机化","authors":"Jin Wei, Ping Chen","doi":"10.3233/jcs-230053","DOIUrl":null,"url":null,"abstract":"By developing a Turing-complete non-control data attack to bypass existing defenses against control flow attacks, Data-Oriented Programming (DOP) has gained significant attention from researchers in recent years. While several defense techniques have been proposed to mitigate DOP attacks, they often introduce substantial overhead due to the blind protection of a large range of data objects. To address this issue, we focus on selecting and protecting the specific target data that are of interest to DOP attackers, rather than securing the entire non-control data in the program. In this regard, we perform static analysis on 20 real-world applications and identify the target data, verifying that they constitute only a small percentage of the overall program, averaging around 3%. Additionally, we propose a semi-automated tool to analyze how to chain operations on the target data in these 20 applications to achieve Turing-complete attacks. Furthermore, we introduce DSLR-: a low-overhead Data Structure Layout Randomization (DSLR) method, which modifies the existing DSLR technique to only randomize the selected target data for DOP. Experimental results demonstrate that DSLR- effectively mitigates DOP attacks, reducing performance overhead by 71.2% and memory overhead by 82.5% compared to the original DSLR technique.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSLR–: A low-overhead data structure layout randomization for defending data-oriented programming\",\"authors\":\"Jin Wei, Ping Chen\",\"doi\":\"10.3233/jcs-230053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By developing a Turing-complete non-control data attack to bypass existing defenses against control flow attacks, Data-Oriented Programming (DOP) has gained significant attention from researchers in recent years. While several defense techniques have been proposed to mitigate DOP attacks, they often introduce substantial overhead due to the blind protection of a large range of data objects. To address this issue, we focus on selecting and protecting the specific target data that are of interest to DOP attackers, rather than securing the entire non-control data in the program. In this regard, we perform static analysis on 20 real-world applications and identify the target data, verifying that they constitute only a small percentage of the overall program, averaging around 3%. Additionally, we propose a semi-automated tool to analyze how to chain operations on the target data in these 20 applications to achieve Turing-complete attacks. Furthermore, we introduce DSLR-: a low-overhead Data Structure Layout Randomization (DSLR) method, which modifies the existing DSLR technique to only randomize the selected target data for DOP. Experimental results demonstrate that DSLR- effectively mitigates DOP attacks, reducing performance overhead by 71.2% and memory overhead by 82.5% compared to the original DSLR technique.\",\"PeriodicalId\":46074,\"journal\":{\"name\":\"Journal of Computer Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-230053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-230053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DSLR–: A low-overhead data structure layout randomization for defending data-oriented programming
By developing a Turing-complete non-control data attack to bypass existing defenses against control flow attacks, Data-Oriented Programming (DOP) has gained significant attention from researchers in recent years. While several defense techniques have been proposed to mitigate DOP attacks, they often introduce substantial overhead due to the blind protection of a large range of data objects. To address this issue, we focus on selecting and protecting the specific target data that are of interest to DOP attackers, rather than securing the entire non-control data in the program. In this regard, we perform static analysis on 20 real-world applications and identify the target data, verifying that they constitute only a small percentage of the overall program, averaging around 3%. Additionally, we propose a semi-automated tool to analyze how to chain operations on the target data in these 20 applications to achieve Turing-complete attacks. Furthermore, we introduce DSLR-: a low-overhead Data Structure Layout Randomization (DSLR) method, which modifies the existing DSLR technique to only randomize the selected target data for DOP. Experimental results demonstrate that DSLR- effectively mitigates DOP attacks, reducing performance overhead by 71.2% and memory overhead by 82.5% compared to the original DSLR technique.
期刊介绍:
The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.