Akinsanola A A, Kooperman G J, Hannah W M, Reed K A, Pendergrass A G, Hsu Wei-Ching
{"title":"对美国现今极端降水的评估:对流和 E3SMv1 动态许可配置的相互比较","authors":"Akinsanola A A, Kooperman G J, Hannah W M, Reed K A, Pendergrass A G, Hsu Wei-Ching","doi":"10.1088/2752-5295/ad0f9e","DOIUrl":null,"url":null,"abstract":"Accurate simulation of the present-day characteristics of mean and extreme precipitation at regional scales remains a challenge for Earth system models, which is due in part to deficiencies in model physics such as convective parameterization (CP), and coarse resolution. High horizontal resolution (HR, ∼25 km) and multiscale modeling framework (MMF, i.e. replacing conventional CP with embedded km-scale cloud-resolving models) are two promising directions that could help improve the interaction between subgrid-scale physical processes and large-scale climate. Here, we evaluate simulated extreme precipitation over the United States (US) across three configurations (i.e. low-resolution [LR], HR, and MMF) of the Energy Exascale Earth System Model (E3SMv1) and intercompare them against two gridded observation datasets (climate prediction center daily US precipitation and integrated multi-satellite retrievals for global precipitation measurement). We assess the model’s ability to simulate very heavy seasonal precipitation (illustrated by the difference between the 99th and 90th percentile values) as well as the spatial distributions of several extreme precipitation indices defined by the expert team on climate change detection and indices. Our results show that both the dry (i.e. consecutive dry days (CDD)) and wet (i.e. consecutive wet days, maximum 5 day precipitation, and very wet days) extremes evaluated herein show some improvement as well as degradation with MMF and HR relative to LR. These results vary across seasons and US subregions. For instance, only the very heavy precipitation of winter is improved with MMF and HR. Both configurations alleviate the well-known drizzling bias evident in LR across both winter and summer in many parts of the US, largely due to the overall improvement in intensity and frequency of precipitation. Additionally, our results suggest that while E3SMv1-MMF has higher intensity rates when it does rain, it has too many CDD during the summer, contributing to a low mean precipitation bias.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"35 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of present-day extreme precipitation over the United States: an inter-comparison of convection and dynamic permitting configurations of E3SMv1\",\"authors\":\"Akinsanola A A, Kooperman G J, Hannah W M, Reed K A, Pendergrass A G, Hsu Wei-Ching\",\"doi\":\"10.1088/2752-5295/ad0f9e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate simulation of the present-day characteristics of mean and extreme precipitation at regional scales remains a challenge for Earth system models, which is due in part to deficiencies in model physics such as convective parameterization (CP), and coarse resolution. High horizontal resolution (HR, ∼25 km) and multiscale modeling framework (MMF, i.e. replacing conventional CP with embedded km-scale cloud-resolving models) are two promising directions that could help improve the interaction between subgrid-scale physical processes and large-scale climate. Here, we evaluate simulated extreme precipitation over the United States (US) across three configurations (i.e. low-resolution [LR], HR, and MMF) of the Energy Exascale Earth System Model (E3SMv1) and intercompare them against two gridded observation datasets (climate prediction center daily US precipitation and integrated multi-satellite retrievals for global precipitation measurement). We assess the model’s ability to simulate very heavy seasonal precipitation (illustrated by the difference between the 99th and 90th percentile values) as well as the spatial distributions of several extreme precipitation indices defined by the expert team on climate change detection and indices. Our results show that both the dry (i.e. consecutive dry days (CDD)) and wet (i.e. consecutive wet days, maximum 5 day precipitation, and very wet days) extremes evaluated herein show some improvement as well as degradation with MMF and HR relative to LR. These results vary across seasons and US subregions. For instance, only the very heavy precipitation of winter is improved with MMF and HR. Both configurations alleviate the well-known drizzling bias evident in LR across both winter and summer in many parts of the US, largely due to the overall improvement in intensity and frequency of precipitation. Additionally, our results suggest that while E3SMv1-MMF has higher intensity rates when it does rain, it has too many CDD during the summer, contributing to a low mean precipitation bias.\",\"PeriodicalId\":432508,\"journal\":{\"name\":\"Environmental Research: Climate\",\"volume\":\"35 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5295/ad0f9e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad0f9e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of present-day extreme precipitation over the United States: an inter-comparison of convection and dynamic permitting configurations of E3SMv1
Accurate simulation of the present-day characteristics of mean and extreme precipitation at regional scales remains a challenge for Earth system models, which is due in part to deficiencies in model physics such as convective parameterization (CP), and coarse resolution. High horizontal resolution (HR, ∼25 km) and multiscale modeling framework (MMF, i.e. replacing conventional CP with embedded km-scale cloud-resolving models) are two promising directions that could help improve the interaction between subgrid-scale physical processes and large-scale climate. Here, we evaluate simulated extreme precipitation over the United States (US) across three configurations (i.e. low-resolution [LR], HR, and MMF) of the Energy Exascale Earth System Model (E3SMv1) and intercompare them against two gridded observation datasets (climate prediction center daily US precipitation and integrated multi-satellite retrievals for global precipitation measurement). We assess the model’s ability to simulate very heavy seasonal precipitation (illustrated by the difference between the 99th and 90th percentile values) as well as the spatial distributions of several extreme precipitation indices defined by the expert team on climate change detection and indices. Our results show that both the dry (i.e. consecutive dry days (CDD)) and wet (i.e. consecutive wet days, maximum 5 day precipitation, and very wet days) extremes evaluated herein show some improvement as well as degradation with MMF and HR relative to LR. These results vary across seasons and US subregions. For instance, only the very heavy precipitation of winter is improved with MMF and HR. Both configurations alleviate the well-known drizzling bias evident in LR across both winter and summer in many parts of the US, largely due to the overall improvement in intensity and frequency of precipitation. Additionally, our results suggest that while E3SMv1-MMF has higher intensity rates when it does rain, it has too many CDD during the summer, contributing to a low mean precipitation bias.