将克诺德尔图嵌入立方体结构:扩张优化和线长分析

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Remi Mariam Reji, R. Sundara Rajan, T. M. Rajalaxmi
{"title":"将克诺德尔图嵌入立方体结构:扩张优化和线长分析","authors":"Remi Mariam Reji, R. Sundara Rajan, T. M. Rajalaxmi","doi":"10.1142/s0219265923500317","DOIUrl":null,"url":null,"abstract":"An important tool for the execution of parallel algorithms and the simulation of interconnection networks is graph embedding. The quality of an embedding can be assessed using some cost metrics. The dilation and wirelength are the commonly used parameters. The Knödel graph [Formula: see text] is a minimum linear gossip network and has minimum broadcasting. It has [Formula: see text] vertices, [Formula: see text] edges, where [Formula: see text] is even, and [Formula: see text]log[Formula: see text]. In this study, we solve the dilation problem of embedding the Knödel graph into certain cube-like architectures such as hypercube, folded hypercube, and augmented cube. In [G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173–195], it is proved that the dilation of embedding the Knödel graph [Formula: see text] into the hypercube [Formula: see text] is at most [Formula: see text]. In this study, we obtain an improved upper bound for dilation of embedding the Knödel graph into the hypercube and it is equal to [Formula: see text]. Also, we calculate the wirelength of embedding the Knödel graph into the above-said cube-like architectures using dilation.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"27 10","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding Knödel Graph into Cube-like Architectures: Dilation Optimization and Wirelength Analysis\",\"authors\":\"Remi Mariam Reji, R. Sundara Rajan, T. M. Rajalaxmi\",\"doi\":\"10.1142/s0219265923500317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important tool for the execution of parallel algorithms and the simulation of interconnection networks is graph embedding. The quality of an embedding can be assessed using some cost metrics. The dilation and wirelength are the commonly used parameters. The Knödel graph [Formula: see text] is a minimum linear gossip network and has minimum broadcasting. It has [Formula: see text] vertices, [Formula: see text] edges, where [Formula: see text] is even, and [Formula: see text]log[Formula: see text]. In this study, we solve the dilation problem of embedding the Knödel graph into certain cube-like architectures such as hypercube, folded hypercube, and augmented cube. In [G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173–195], it is proved that the dilation of embedding the Knödel graph [Formula: see text] into the hypercube [Formula: see text] is at most [Formula: see text]. In this study, we obtain an improved upper bound for dilation of embedding the Knödel graph into the hypercube and it is equal to [Formula: see text]. Also, we calculate the wirelength of embedding the Knödel graph into the above-said cube-like architectures using dilation.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

图嵌入是执行并行算法和模拟互连网络的重要工具。嵌入的质量可以通过一些成本指标来评估。扩张和线长是常用参数。克诺德尔图[计算公式:见正文]是最小线性八卦网络,具有最小广播。它有[公式:见正文]顶点、[公式:见正文]边(其中[公式:见正文]为偶数)和[公式:见正文]log[公式:见正文]。在这项研究中,我们解决了将克诺德尔图嵌入某些立方体结构(如超立方体、折叠超立方体和增强立方体)的扩张问题。在[G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173-195] 中,证明了将 Knödel 图[公式:见正文]嵌入超立方体[公式:见正文]的扩张量至多为[公式:见正文]。在本研究中,我们得到了将克诺德尔图嵌入超立方体的扩张的改进上界,它等于[式:见正文]。此外,我们还计算了利用扩张法将克诺德尔图嵌入上述立方体架构的线长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Knödel Graph into Cube-like Architectures: Dilation Optimization and Wirelength Analysis
An important tool for the execution of parallel algorithms and the simulation of interconnection networks is graph embedding. The quality of an embedding can be assessed using some cost metrics. The dilation and wirelength are the commonly used parameters. The Knödel graph [Formula: see text] is a minimum linear gossip network and has minimum broadcasting. It has [Formula: see text] vertices, [Formula: see text] edges, where [Formula: see text] is even, and [Formula: see text]log[Formula: see text]. In this study, we solve the dilation problem of embedding the Knödel graph into certain cube-like architectures such as hypercube, folded hypercube, and augmented cube. In [G. Fertin, A. Raspaud, A survey on Knödel graphs, Discrete Applied Mathematics 137 (2004) 173–195], it is proved that the dilation of embedding the Knödel graph [Formula: see text] into the hypercube [Formula: see text] is at most [Formula: see text]. In this study, we obtain an improved upper bound for dilation of embedding the Knödel graph into the hypercube and it is equal to [Formula: see text]. Also, we calculate the wirelength of embedding the Knödel graph into the above-said cube-like architectures using dilation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信