Zsuzsanna Horváth-Mezőfi, Emese Bátor, Gergő Szabó, Mónika Göb, Z. Sasvar, Lien Le Phuong Nguyen, Koppány Majzinger, K. Hidas, Anna Visy, G. Hitka, T. Zsom
{"title":"1-MCP 处理对贮藏期间番茄光合叶绿素活性的影响","authors":"Zsuzsanna Horváth-Mezőfi, Emese Bátor, Gergő Szabó, Mónika Göb, Z. Sasvar, Lien Le Phuong Nguyen, Koppány Majzinger, K. Hidas, Anna Visy, G. Hitka, T. Zsom","doi":"10.1556/446.2023.00078","DOIUrl":null,"url":null,"abstract":"Ethylene has key roles in triggering and speeding up ripening processes, which in tomatoes take the form of various qualitative changes. Tomatoes, just like all climacteric fruits, need a continuous ethylene exposure to accelerate ripening. Therefore, it is possible to use ripening regulators preventing ethylene binding. According to some studies, chlorophyll fluorescence measurements can be used at least as efficiently as tristimulus colorimetry classifying tomatoes based on maturity. Measurements were carried out by treating fresh tomatoes with 1-MCP (1-methylcyclopropene) at six different stages of ripening and studying the changes in chlorophyll content related quality characteristics (e.g. surface colour, chlorophyll fluorescence) during postharvest storage (two-week refrigerated storage at 15 °C followed by a two-week shelf life). According to our results, chlorophyll content and photosynthetic activity of the treated samples decreased much less than those of untreated ones. Additionally, anti-ripening treatment proved to be more effective on tomatoes at an earlier stage of ripening.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":"15 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of 1-MCP treatment on tomato photosynthetic chlorophyll activity during storage\",\"authors\":\"Zsuzsanna Horváth-Mezőfi, Emese Bátor, Gergő Szabó, Mónika Göb, Z. Sasvar, Lien Le Phuong Nguyen, Koppány Majzinger, K. Hidas, Anna Visy, G. Hitka, T. Zsom\",\"doi\":\"10.1556/446.2023.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethylene has key roles in triggering and speeding up ripening processes, which in tomatoes take the form of various qualitative changes. Tomatoes, just like all climacteric fruits, need a continuous ethylene exposure to accelerate ripening. Therefore, it is possible to use ripening regulators preventing ethylene binding. According to some studies, chlorophyll fluorescence measurements can be used at least as efficiently as tristimulus colorimetry classifying tomatoes based on maturity. Measurements were carried out by treating fresh tomatoes with 1-MCP (1-methylcyclopropene) at six different stages of ripening and studying the changes in chlorophyll content related quality characteristics (e.g. surface colour, chlorophyll fluorescence) during postharvest storage (two-week refrigerated storage at 15 °C followed by a two-week shelf life). According to our results, chlorophyll content and photosynthetic activity of the treated samples decreased much less than those of untreated ones. Additionally, anti-ripening treatment proved to be more effective on tomatoes at an earlier stage of ripening.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2023.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2023.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Effect of 1-MCP treatment on tomato photosynthetic chlorophyll activity during storage
Ethylene has key roles in triggering and speeding up ripening processes, which in tomatoes take the form of various qualitative changes. Tomatoes, just like all climacteric fruits, need a continuous ethylene exposure to accelerate ripening. Therefore, it is possible to use ripening regulators preventing ethylene binding. According to some studies, chlorophyll fluorescence measurements can be used at least as efficiently as tristimulus colorimetry classifying tomatoes based on maturity. Measurements were carried out by treating fresh tomatoes with 1-MCP (1-methylcyclopropene) at six different stages of ripening and studying the changes in chlorophyll content related quality characteristics (e.g. surface colour, chlorophyll fluorescence) during postharvest storage (two-week refrigerated storage at 15 °C followed by a two-week shelf life). According to our results, chlorophyll content and photosynthetic activity of the treated samples decreased much less than those of untreated ones. Additionally, anti-ripening treatment proved to be more effective on tomatoes at an earlier stage of ripening.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.