在 CSE-CIC-IDS-2018 数据集上分三个阶段优化入侵检测系统

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Surasit Songma, Theera Sathuphan, Thanakorn Pamutha
{"title":"在 CSE-CIC-IDS-2018 数据集上分三个阶段优化入侵检测系统","authors":"Surasit Songma, Theera Sathuphan, Thanakorn Pamutha","doi":"10.3390/computers12120245","DOIUrl":null,"url":null,"abstract":"This article examines intrusion detection systems in depth using the CSE-CIC-IDS-2018 dataset. The investigation is divided into three stages: to begin, data cleaning, exploratory data analysis, and data normalization procedures (min-max and Z-score) are used to prepare data for use with various classifiers; second, in order to improve processing speed and reduce model complexity, a combination of principal component analysis (PCA) and random forest (RF) is used to reduce non-significant features by comparing them to the full dataset; finally, machine learning methods (XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes) are applied to specific features and preprocessing procedures, with the XGBoost, DT, and RF models outperforming the others in terms of both ROC values and CPU runtime. The evaluation concludes with the discovery of an optimal set, which includes PCA and RF feature selection.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"62 37","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Intrusion Detection Systems in Three Phases on the CSE-CIC-IDS-2018 Dataset\",\"authors\":\"Surasit Songma, Theera Sathuphan, Thanakorn Pamutha\",\"doi\":\"10.3390/computers12120245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines intrusion detection systems in depth using the CSE-CIC-IDS-2018 dataset. The investigation is divided into three stages: to begin, data cleaning, exploratory data analysis, and data normalization procedures (min-max and Z-score) are used to prepare data for use with various classifiers; second, in order to improve processing speed and reduce model complexity, a combination of principal component analysis (PCA) and random forest (RF) is used to reduce non-significant features by comparing them to the full dataset; finally, machine learning methods (XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes) are applied to specific features and preprocessing procedures, with the XGBoost, DT, and RF models outperforming the others in terms of both ROC values and CPU runtime. The evaluation concludes with the discovery of an optimal set, which includes PCA and RF feature selection.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"62 37\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12120245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12120245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用 CSE-CIC-IDS-2018 数据集深入研究了入侵检测系统。研究分为三个阶段:首先,使用数据清理、探索性数据分析和数据归一化程序(最小最大值和 Z-score)来准备数据,以便与各种分类器配合使用;其次,为了提高处理速度并降低模型复杂性,使用主成分分析(PCA)和随机森林(RF)相结合的方法,通过与完整数据集进行比较来减少非显著特征;最后,对特定特征和预处理程序采用机器学习方法(XGBoost、CART、DT、KNN、MLP、RF、LR 和 Bayes),其中 XGBoost、DT 和 RF 模型在 ROC 值和 CPU 运行时间方面都优于其他模型。评估最后发现了一个最佳集,其中包括 PCA 和 RF 特征选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Intrusion Detection Systems in Three Phases on the CSE-CIC-IDS-2018 Dataset
This article examines intrusion detection systems in depth using the CSE-CIC-IDS-2018 dataset. The investigation is divided into three stages: to begin, data cleaning, exploratory data analysis, and data normalization procedures (min-max and Z-score) are used to prepare data for use with various classifiers; second, in order to improve processing speed and reduce model complexity, a combination of principal component analysis (PCA) and random forest (RF) is used to reduce non-significant features by comparing them to the full dataset; finally, machine learning methods (XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes) are applied to specific features and preprocessing procedures, with the XGBoost, DT, and RF models outperforming the others in terms of both ROC values and CPU runtime. The evaluation concludes with the discovery of an optimal set, which includes PCA and RF feature selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信